Skip to main content
Log in

Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Drought is one of major constraints that limits agricultural productivity. Some factors, including climate changes and acreage expansion, indicates towards the need for developing drought tolerant genotypes. In addition to its protective role against endoplasmic reticulum (ER) stress, we have previously shown that the molecular chaperone binding protein (BiP) is involved in the response to osmotic stress and promotes drought tolerance. Here, we analyzed the proteomic and metabolic profiles of BiP-overexpressing transgenic soybean plants and the corresponding untransformed line under drought conditions by 2DE-MS and GC/MS. The transgenic plant showed lower levels of the abscisic acid and jasmonic acid as compared to untransformed plants both in irrigated and non-irrigated conditions. In contrast, the level of salicylic acid was higher in transgenic lines than in untransformed line, which was consistent with the antagonistic responses mediated by these phytohormones. The transgenic plants displayed a higher abundance of photosynthesis-related proteins, which gave credence to the hypothesis that these transgenic plants could survive under drought conditions due to their genetic modification and altered physiology. The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype. The transgenic plants may have adopted a mechanism of drought tolerance by accumulating osmotically active solutes in the cell. As evidenced by the metabolic profiles, the accumulation of nine primary amino acids by protein degradation maintained the cellular turgor in the transgenic genotype under drought conditions. Thus, this mechanism of protection may cause the physiological activities including photosynthesis to be active under drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aayudh D, Rushton PJ, Rohila JS (2017) Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 6(2):21

    Google Scholar 

  • Ahmad P, Rasool S, Gul A, Akram NA, Ashraf M, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Alia MP, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Azooz MM, Youssef MM (2010) Evaluation of heat shock and salycilic acid treatments as inducers of drought stress tolerance in hassawi wheat. Am J Plant Physiol 5:56–70

    Article  CAS  Google Scholar 

  • Bao Y, Howell SH (2017) The unfolded protein response supports plant development and defense as well as responses to abiotic stress. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00344

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carvalho HH, Brustolini OJB, Pimenta RP, Mendes GC, Gouveia BC, Silva PA, Silva JCF, Mota CS, Ramos JRLS, Fontes EPB (2014) The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption. PLoS ONE 9:86661

    Article  CAS  Google Scholar 

  • Cascardo JCM, Buzeli RAA, Almeida RS, Otoni WC, Fontes EPB (2001) Differential expression of the soybean BiP gene family. Plant Sci 160:273–281

    Article  CAS  PubMed  Google Scholar 

  • CONAB-National Supply Company (2014) Follow-up of the harvest 2013/2014. http://www.conb.gov.br/conteudos.php?a=1253&t=2. Accessed 10 Apr 2014

  • Costa MDL, Reis PAB, Valente MAS, Irsigler AST, Carvalho CM, Loureiro ME, Aragão FJL, Boston RS, Fietto LG, Fontes EPB (2008) A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant–specific asparagine–rich proteins to promote cell death. J Biol Chem 283:20209–20219

    Article  CAS  PubMed  Google Scholar 

  • Cuadros-Inostroza Á, Caldana C, Redestig H, Kusano M, Lisec J, Peña-Cortés H, Willmitzer L, Hannah MA (2009) TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics 10(1):428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58

    Article  Google Scholar 

  • Das A, Eldakak M, Paudel B, Kim WD, Hemmati H, Basu C, Rohila JS (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. Biomed Res 2016:6021047

    Google Scholar 

  • De Ronde JA, Van Der Mescht A, Steyn HSF (2000) Proline accumulation in response to drought and heat stress in cotton. Afr Crop Sci J 8:85–92

    Article  Google Scholar 

  • Dias MC, Brüggemann W (2010) Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica 48(1):96–102

    Article  CAS  Google Scholar 

  • Djilianov D, Georgieva T, Moyankova D, Atanassov A, Shinozaki K, Smeeken SCM, Verma PDS, Murata N (2005) Improved abiotic stress tolerance in plants by accumulation of osmoprotectants. Gene Transf Approach Biotechnol Biotechnol Equip 19:63–71

    Article  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  Google Scholar 

  • Flexas J, Galmes J, Ribas-Carbo M, Medrano H (2005) The effects of water stress on plant respiration. Plant respiration: from cell to ecosystem. Springer, Dordrecht, pp 85–94

    Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT, Siddique KHM, Varshney R, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, Cooper JW, Miller AJ, Kunert K, Vorster J, Cullis C, Ozga JA, Wahlqvist ML, Liang Y, Shou H, Shi K, Yu J, Fodor N, Kaiser BN, Wong FL, Valliyodan B, Considine MJ (2016) Neglecting legumes has compromised global food and nutritional security. Nat Plants 2:1–10

    Article  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide-dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Haigh NG, Johnson AE (2002) A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J Cell Biol 156:261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamman BD, Hendershot LM, Johnson AE (1998) BiP maintains the permeability barrier of the ER membrane by sealing the lumenal end of the translocon pore before and early in translocation. Cell 92:747–758

    Article  CAS  PubMed  Google Scholar 

  • Häusler RE, Ludewig F, Krueger S (2014) Amino acids—a life between metabolism and signaling. Plant Sci 229:225–237

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt TM, Nesi AN, Araújo WL, Braun HP (2015) Amino acid catabolism in plants. Mol Plant 8(11):1563–1579

    Article  CAS  PubMed  Google Scholar 

  • Hirakuri MH, Lazzarotto JJ (2014) Soybean agribusiness in the world and Brazilian contexts. Embrapa Soy, Londrina. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/104753/1/O-agronegocio-da-soja-nos-contextos-mundial-e-brasileiro.pdf. Accessed 24 Mar 2018

  • Hong Z, Jin H, Tzfira T, Li J (2008) Multiple mechanism–mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. P. Cell. 20:3418–3429

    Article  CAS  Google Scholar 

  • Huang B, Gao H (2000) Growth and carbohydrate metabolism of creeping bentgrass cultivars in response to increasing temperatures. Crop Sci 40:1115–1120

    Article  Google Scholar 

  • Huang T, Jander G (2017) Abscisic acid-regulated protein degradation causes osmotic stress induced accumulation of branched-chain amino acids in Arabidopsis thaliana. Planta 246:737–747

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Ahmad D, AdilKhan M (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotech 8:257–266

    Article  CAS  Google Scholar 

  • Ku YS, Au-Yeung WK, Yung YL, Li MW, Wen CQ, Liu X, Lam HM (2013) Drought stress and tolerance in soybean. In: Board JE (ed) A comprehensive survey of international soybean research—genetics, physiology, agronomy and nitrogen relationships. InTech, New York, pp 209–237

    Google Scholar 

  • Kurepa J, Wang S, Li Y, Smalle J (2009) Proteasome regulation, plant growth and stress tolerance. Plant Signal Behav 4(10):924–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leborgne-Castel N, Jelitto-Van Dooren EPWM, Crofts AJ, Denecke J (1999) Overexpression of BiP in tobacco alleviates endoplasmic reticulum stress. Plant Cell 11:459–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147:316–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Peña-Cortés H, Willmitzer L, Hannah MA (2009) TargetSearch—a bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinform 10:428

    Article  CAS  Google Scholar 

  • Meyer RF, Boyer JS (1981) Osmoregulation, solute distribution, and growth in soybean seedlings having low water potentials. Planta 151:482–489

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Munné-Bosch S (2011) Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 7:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nambara E, Kawaide H, Kamiya Y, Naito S (1998) Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA dependent and ABA-independent accumulation of free amino acids during dehydration. Plant Cell Physiol 39:853–858

    Article  CAS  PubMed  Google Scholar 

  • Oliveira GLT (2016) The geopolitics of Brazilian soybeans. J Peasant Stud 43(2):348–372

    Article  Google Scholar 

  • Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BWM, Cushman JC (2011) A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in sporobolusstapfianus. Plant Cell 23:1231–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pincus D, Chevalier MW, Aragon T, Van Anken E, Vidal SE, El-Samad H (2010) BiP Binding to the ER-stress sensor ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol 1:1. https://doi.org/10.1371/journal.pbio.1000415

    Article  CAS  Google Scholar 

  • Reddya AR, Chaitanyaa KV, Vivekanandanb M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Reis PAB, Fontes EPB (2012) N-rica proteína (NRP) mediada sinalização morte celular: um novo ramo da resposta ao estresse ER com implicações para a biotecnologia vegetal. Plant Signal Behav 7:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis PAB, Rosado GL, Silva LA, Oliveira LC, Oliveira LB, Costa MD, Alvim FC, Fontes EPB (2011) The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway. Plant Physiol 157:1853–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis PAB, Carpinetti PA, Freitas PPJ, Santos EGD, Camargos LF, OliveiraI HT, Silva JCF, Carvalho HH, Dal-Bianco M, Ramos JLRS, Fontes EPB (2016) Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC PlantBiol 16:156

    Article  CAS  Google Scholar 

  • Ribas-Carbo M, Taylor LN, Giles L, Busquets S, Finnegan PM, Day DA, Lambers H, Medrano H, Berry JA, Flexas J (2005) Effects of water stress on respiration in soybean leaves. Plant Physiol 139:466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues SM, Andrade MO, Gomes APS, DaMatta FM, Baracat-Pereira MC, Fontes EPB (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Biol Chem 57:1909–1918

    CAS  Google Scholar 

  • Ruberti C, Kim SJ, Stefano G, Brandizzi F (2015) Unfolded protein response in plants: one master, many questions. Curr Opin Plant Biol 27:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholander PE, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, HavlĭsOlsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Silva MA, Jifon JL, Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201

    Article  Google Scholar 

  • Silva PA, Silva JCF, Caetano HDN, Machado JPB, Mendes GC, Reis PAB, Brustolini OJB, Dal-Bianco M, Fontes EPB (2015) Comprehensive analysis of the endoplasmic reticulum stress response in the soybean genome: conserved and plant-specific features. BMC Genom 16:783

    Article  CAS  Google Scholar 

  • Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE 7:e38554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart GR, Larher F (1980) Accumulation of amino acids and related compounds in relation to environmental stress. Biochem Plants 5:609–635

    CAS  Google Scholar 

  • Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S, Shen QJ, Morandi D, Bücking H, Shulaev V, Rushton PJ (2016) A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genom 17:1–22

    Article  CAS  Google Scholar 

  • Umeda M, Hara C, Matsubayashi Y, Li HH, Liu Q, Tadokoro F, Aotsuka S, Uchimiya H (1994) Expressed sequence tags from cultured cells of rice 106 (Oryza sativa L.) under stressed conditions: analysis of genes engaged in ATP generating pathways. Plant Mol Biol 25:469–478

    Article  CAS  PubMed  Google Scholar 

  • Valente MAS, Faria JQA, Ramos JRLS, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG, Loureiro ME, Aragao FJL, Fontes EBP (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036–1040

    Article  CAS  PubMed  Google Scholar 

  • Wehmeyer N, Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol 122:1099–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01092

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Budworth P, Han B, Brown D, Chang HS, Zou G, Wang X (2001) Toward elucidating the global expression patterns of developing Arabidopsis: parallel analysis of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol Biochem 39:221–242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to NuBioMol (Center of Analyses of Biomolecules-UFV, Brazil) for the infrastructure and technical assistance. This study was supported by the National Institute of Science and Technology in Plant-Pest Interaction (INCT-IPP), The Brazilian Soybean Genome Consortium (GENOSOJA), the Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Josué de Oliveira Ramos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coutinho, F.S., dos Santos, D.S., Lima, L.L. et al. Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP. Physiol Mol Biol Plants 25, 457–472 (2019). https://doi.org/10.1007/s12298-019-00643-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-019-00643-x

Keywords

Navigation