Skip to main content
Log in

Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Root system is a vital part of plants for absorbing soil moisture and nutrients and it influences the drought tolerance. Identification of the genomic regions harbouring quantitative trait loci (QTLs) for root and yield traits, and the linked markers can facilitate sorghum improvement through marker-assisted selection (MAS) besides the deeper understanding of the plant response to drought stress. A population of 184 recombinant inbred lines (RILs), derived from E36-1 × SPV570, along with parents were phenotyped for component traits of yield in field and root traits in an above ground rhizotron. High estimates of heritability and genetic advance for all the root traits and for most of the yield traits, presents high scope for improvement of these traits by simple selection. A linkage map constructed with 104 marker loci comprising 50 EST-SSRs, 34 non-genic nuclear SSRs and 20 SNPs, and QTL analysis was performed using composite interval mapping (CIM) approach. A total of eight and 20 QTLs were mapped for root and yield related traits respectively. The QTLs for root volume, root fresh weight and root dry weight were found co-localized on SBI-04, supported by a positive correlation among these traits. Hence, these traits can be improved using the same linked markers. The lack of overlap between the QTLs of component traits of root and yield suggested that these two sets of parameters are independent in their influence and the possibility of combining these two traits might enhance productivity of sorghum under receding moisture condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aastveit AH, Aastveit K (1993) Effect of genotype environment interactions on genetic correlations. Theor Appl Genet 86:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York, p 85

    Google Scholar 

  • Anderson JR, Lubbersted T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  Google Scholar 

  • Andrew HP, John EB, Rémy B, Inna D, Jane G, Heidrun G, Georg H, Uffe H, Therese M, Alexander P, Jeremy S, Manuel S, Haibao T, Xiyin W, Thomas W, Arvind KB, Jarrod C, Alex F, Udo G, Igor VG, Eric L, Christopher AM, Mihaela M, Apurva N, Robert PO, Bryan WP, Asaf AS, Yu W, Lifang Z, Nicholas CC, Michael F, Alan RG, Thomas H, Beat K, Patricia K, Stephen K, Maureen CM, Ray M, Daniel GP, Mehboob-ur-Rahman, Doreen W, Peter W, Klaus FX, Mayer JM, Daniel SR (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  Google Scholar 

  • Arun SS (2006) In silico EST data mining for elucidation of repeats biology and functional annotation in sorghum (Sorghum bicolor (L.) Moench). M. Sc. (Agri.) Thesis, Univ. Agric. Sci, Dharwad, Karnataka (India)

  • Basten CJ, Weir BS, Zeng ZB (1994) Zmap -a QTL cartographer. In: Smith C, Gavora JS, Benkel, B, Chesnais J, Fairfull W, Gibson JP, Kennedy BW, Burnside EB (eds) World congress on genetics applied to livestock production, 5th, 7th-12th August, 1994, Guelph, ON, Canada. Proceedings Computing strategies and software. Guelph, Organizing Committee, 1994, pp. 65–66

  • Bhan S, Singh HG, Singh A (1973) Note on root development as an index of drought resistance in sorghum (Sorghum bicolor L. Moench). Indian J Agric Sci 43:828–830

    Google Scholar 

  • Bhattarmakki D, Jianmin D, Ashok K, Chhabr B, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  Google Scholar 

  • Burrow GB, Franks CD, Acosta-Martinez V, Xin Z (2008) Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 118:423–431

    Article  Google Scholar 

  • Burton GW, Devane EM (1953) Estimating heritability in tall fescae (Festuca arumdincea) from replicated clonal material. Agron J 45:478–481

    Article  Google Scholar 

  • Ceccarelli S, Grando S (1996) Drought as a challenge for the plant breeder. Plant Growth Regul 20:149–155

    Article  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  CAS  PubMed  Google Scholar 

  • Davis WW, Middleton GK, Herbert TT (1961) Inheritance of protein, texture and yield in wheat. Crop Sci 12:235–238

    Article  Google Scholar 

  • Girma Y (2009) Mining of genomic resources for SNP and SNP-CAPs Markers and divergence for drought tolerance in sorghum (Sorghum bicolor L. Moench), M. Sc. Thesis. Univ. Agri. Sci, Dharwad, Karnataka (India)

  • Hanson WD (1959) Early generation analysis of lengths of heterozygous chromosome segments around a locus held heterozygous with backcrossing or selfing. Genet 44:833–837

    CAS  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    CAS  PubMed  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO, Folkertsma RT, Reddy BVS, Kayentao M, Welz HG, Geiger HH (2004) Genomic regions influencing resistance to parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, Fereres E, Acevedo E, Henderson DW (1976) Water stress dynamics of growth and yield of crop plants. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life-problems and modern approaches. Springer, Heidelberg, pp 281–305

    Chapter  Google Scholar 

  • IBPGR/ICRISAT (1993) Descriptors for Sorghum [Sorghum bicolor (L) Moench]. International Board of Plant Genetic Resources. Rome, Italy/International Crop Research Institute for Semi-Arid Tropics, Patancheru, India

  • Johnson HW, Robinson HF, Comstock RE (1955) Estimates of genetic and environmental variability in soybean. Agron J 47:314–318

    Article  Google Scholar 

  • Jordan WR, Miller FR, Morris DE (1979) Genetic variation in root and shoot growth of sorghum in hydroponics. Crop Sci 19–23

  • Kebede H, Subudhi PK, Rosenow DT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Lander ES, Green PL, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genome 1:174–181

    Article  CAS  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron J 43:107–153

    Article  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Patricia EK, Robert R, Kilian A, Wenzl P, Xia L, Halloran K, David RJ (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  CAS  PubMed  Google Scholar 

  • Matsuura A, Inanaga S, Sugimoto Y (1996) Mechanism of interspecific differences among four graminaceous crops in growth response to soil drying. Jpn J Crop Sci 65:352–360

    Article  CAS  Google Scholar 

  • Mayaki WC, Stone LR, Teare ID (1976) Irrigated and nonirrigated soybean, corn, and grain sorghum root systems. Agron J 68:532–534

    Article  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  CAS  PubMed  Google Scholar 

  • Muhammad AA, Amjad A, Shahid N, Zulkiffal M, Shiraz A (2009) Morpho-physiological criteria for drought tolerance in sorghum (Sorghum bicolor) at seedling and post-anthesis Stages. Int J Agric Biol 11:1814–9596

    Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain non-structural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and SNP polymorphisms using the polymerase chain reaction. Genome 5:874–879

    Article  CAS  Google Scholar 

  • Patil AM (2009) Genome-wide molecular mapping, introgression of stable QTLs and expressional quantitation of transcription factor genes in charcoal rot manifestation in Sorghum bicolor (L.) Moench, Ph. D. Thesis. Univ. Agric. Sci, Dharwad, Karnataka (India)

  • Patil S (2011) Genome-wide QTL mapping for post-flowering drought tolerance and validation of charcoal rot resistance QTLs NILs of sorghum. Ph. D. Thesis. Univ. Agri. Sci, Dharwad, Karnataka (India)

  • Patil AM, Fakrudin B, Narayana YD, Bhat R, Koti RV, Salimath PM (2010) Molecular mapping of gene based markers in sorghum. Karnataka J Agric Sci 23(5):681–686

    Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  PubMed  Google Scholar 

  • Punnuri SM (2004) QTL mapping of charcoal rot resistance in sorghum (Sorghum bicolor (L.) Moench) using SSR markers. M. Sc. Thesis, Univ. Agri. Sci, Dharwad, Karnataka (India)

  • Rahman H, Pekic S, Lazic-Jancic V, Quarrie SA, Shah SMA, Pervez A, Shah MM (2011) Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genet Mol Res 10(2):889–901

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar (2004) Genetic and molecular analysis of charcoal rot resistance in sorghum. M. Sc. Thesis. Univ. Agri. Sci, Dharwad, Karnataka, (India)

  • Rajkumar, Fakrudin B, Kuruvinashetti MS (2007) Genetic variability and correlation studies in sorghum. Indian J Genet Plant Breed 67(2):198–199

    Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Reddy PS, Fakrudin B, Rajkumar, Punnuri SM, Arun SS, Kuruvinashetti MS, Das IK, Seetharama N (2008) Molecular mapping of genomic regions harboring QTLs for stalk rot resistance in sorghum. Euphytica 159:191–198

    Article  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Article  Google Scholar 

  • Russell J, Booth A, Fuller J, Harrower B, Hardly P, Machray G, Powell W (2004) A comparison of sequence based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389–398

    Article  CAS  PubMed  Google Scholar 

  • Salih AA, Ali IA, Lux A, Luxova M, Cohen Y, Sugimoto Y, Inanga S (1999) Rooting, water uptake and xylem structure adaptation to drought of two sorghum cultivars. Crop Sci 39:168–173

    Article  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor (L) Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Seetharama N, Singh S, Reddy BVS (1990) Strategies for improving postrainy sorghum productivity. Proc Indian Natl Sci Acad 1990(56):455–467

    Google Scholar 

  • Singh RK, Choudhary BD (1985) Biometrical methods in quantitative genetic analysis. Kalyani, New Delhi, India

  • Singhal D, Gupta P, Sharma P, Kashyap N, Anand S, Sharma H (2011) In silico single nucleotide polymorphisms (SNP) mining of Sorghum bicolor genome. African J Biotechnol 10(4):580–583

    Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellites markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  CAS  PubMed  Google Scholar 

  • Subudhi PK, Rosenowm DT, Nguyen HT (2000) Quantitative trait loci for the stay-green trait in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M, Pe ME (1997) Characterization and mapping of simple sequence repeats in Sorghum bicolor (L.) Moench. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Thudi M (2004) Molecular profiling and phenotyping of root and shoot traits in selected Rabi Sorghum [Sorghum bicolour (L.) Moench] genotypes. M.Sc. Thesis, Univ. Agric. Sci, Dharwad, Karnataka (India)

  • Tuinstra MR, Grote EM, Goldsborough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1998) Evaluation of near isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Article  Google Scholar 

  • Turner NC (1986) Crop water deficits: a decade of progress. Adv Agron 39:1–51

    Article  Google Scholar 

  • Vadez V, Kashiwagi J, Krishnamurthy L, Serraj R, Sharma KK, Devi J, Bhatnagar-Mathur P, Hoisington D, Chandra S, Gaur PM, Nigam SN, Rupakula A, Upadhyaya HD, Hash CT, Rizvi SMH (2005) Recent advances in drought research at ICRISAT: using root traits and rd29a:DREB1A to increase water use and water use efficiency in drought-prone areas. Poster presented at the Interdrought II conference, Rome, 24-28 September

  • Veldboom LR, Lee M, Woodman WL (1994) Molecular facilitated studies of morphological traits in an elite maize population II: Determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    Google Scholar 

  • Venuprasad R, Shashidhar HE, Hittalmani S, Hemamalini GS (2002) Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica 128:293–300

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, USA (http://statger.ncsu.edu/qtlcart/WQTLCart.htm)

  • Xiao J, Li J, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of precision mapping of quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genet 136:1457–1468

    CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India (DBT Programme Support Project). We thank the Project Monitoring and Mentoring Committee (PMMC) members, Dr. V. P. Gupta, Dr. N. Seetharama; Dr. P. Balasubramaniam, Dr. M. B. Chetti, Dr H.E. Shashidhar and Dr. Shailaja Hittalmani for their helpful suggestions from time to time. We acknowledge the timely help of Dr. B. T. Ninganur, in facilitating root studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Fakrudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajkumar, Fakrudin, B., Kavil, S.P. et al. Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol Mol Biol Plants 19, 409–419 (2013). https://doi.org/10.1007/s12298-013-0188-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0188-0

Keywords

Navigation