Skip to main content
Log in

Modelling of sintering during rotational moulding of the thermoplastic polymers

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper concerns the study of sintering phenomenon during rotational molding of polypropylene(PP),Polyvinylidenefluoride (PVDF) and Polymethyl methacrylate (PMMA). First, the coalescence (first step of sintering) of two grains has been followed. Bellehumeur’s model has been tested as a model to explain this phenomenon. In order to study the effect of neighboring grains on coalescence of two grains, a third grain has been put in contact with these two grains. For modeling the phenomenon in this case, Bellehumeur’s model has been modified by a geometric parameter called Farz Factor (FF), being this model validated by experimental test. Concerning densification, two different stages have been observed. In the first stage, before welding of the grains and formation of interphases between them, the grains are not stuck yet. The air trapped between the grains escapes through free ways between grains. This first step of densification is directly related to the coalescence where the density of the polymer varies very quickly. A new tridimensional model, based on a Body Centered Tetragonal (BCT) configuration, has been proposed to explain the densification during this first stage. In the second stage, the migration of air is controlled by diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Crawford RJ, Throne JL (2002) Rotational molding technology. William Andrew Publishing, New York

    Google Scholar 

  2. Tcharkhtchi A (2004) Rotomoulage de pièces en matière thermoplastique, Techniques de l’ingénieur, AM 3706, 1–1

  3. Rao MA, Throne JL (1972) Principles of rotational molding. Polym Eng Sci 12:237–264

    Article  Google Scholar 

  4. Bonis LJ, Hausner HH, Lontz J (1964) Sintering of polymer materials. Sintering and plastic deformation. Springer, US, pp 25–47

    Book  Google Scholar 

  5. Asgarpour M, Bakir F, Khelladi S, Khavandi A, Tcharkhtchi A (2011) Characterization and modeling of sintering of polymer particles. J Appl Polym Sci 119:2784–2792

    Article  Google Scholar 

  6. Greco A, Maffezzoli A (2003) Polymer melting and polymer powder sintering by thermal analysis. J Therm Anal Calorim 72:1167–1174

    Article  Google Scholar 

  7. Bellehumeur CT, Bisaria MK, Vlachopoulos J (1996) An experimental study and model assessment of polymer sintering. Polym Eng Sci 36:2198–2207

    Article  Google Scholar 

  8. Rosenzweig N, Narkis M (1981) Sintering rheology of amorphous polymers. Polym Eng Sci 21:1167–1170

    Article  Google Scholar 

  9. Mazur S (1995) Coalescence of polymer particles in polymer powder technology. Wiley, Chiechester, chapter 8

    Google Scholar 

  10. He Y, Howes T, Litster JD, Ko GH (2002) Experimental study of drop-interface coalescence in the presence of polymer stabilisers. Colloids Surf A Physicochem Eng Asp 207:89–104

    Article  Google Scholar 

  11. Frenkel J (1945) Viscous flow of cristalline bodies under the action of surface tension. J Phys 16:385–391

    Google Scholar 

  12. Lontz JF (1964) Sintering of polymer materials, in Fundamental phenomena in the material sciences. Plenum press, New York, pp 25–47

    Google Scholar 

  13. Pokluda O, Bellehumeur CT, Vlachopoulos J (1997) Modification of Frenkel’s model for sintering. AIChE J 43(12):3253–3256. doi:10.1002/aic.690431213

    Article  Google Scholar 

  14. Pop-Iliev R, Rizvi GM, Park CB (2003) The importance of timely polymer sintering while processing polypropylene foams in rotational molding. Polym Eng Sci 43(1):40–54

    Article  Google Scholar 

  15. Bellehumeur C, Li L, Sun Q, Gu P (2004) Modeling of bond formation between polymer filaments in the fused deposition modeling process. J Manuf Process 6(2):170–178

    Article  Google Scholar 

  16. Progelhof RC, Cellier G and Throne JL (1982) New technology in rotational molding powder densification. In: “Society of Plastics Eng. Annual Technical Conference”, San Francisco, USA, 28:627–629

  17. Asgarpour M, Bakir F, Khelladi S, Khavandi A, Tcharkhtchi A (2012) 3D model for powder compact densification in rotational molding. Polym Eng Sci 52(9):2033–2040

    Article  Google Scholar 

  18. Park H, Thompson RB, Lanson N, Tzoganakis C, Park CB, Chen P (2007) Effect of temperature and pressure on surface tension of polystyrene in supercritical carbon dioxide. J Phys Chem B 111(15):3859–3868. doi:10.1021/jp065851t

    Article  Google Scholar 

  19. Pérot E (2006) Optimisation et modélisation du procédé de rotomoulage. INSA de Lyon

  20. Muller J-D (2008) Etude des changements de phase de polymère dans le procédé de rotomoulage: coalescence et cristallisation couplées à la thermique du procédé. INSA de Lyon

  21. Kontopoulou M, Vlachopoulos J (2001) Melting and densification of thermoplastic powders. Polym Eng Sci 41(2):155–169. doi:10.1002/pen.10718

    Article  Google Scholar 

  22. Asgarpour M (2010) Analyse et modélisation de la coalescence et de la densification des grains de polymére lors du procédé de rotomoulage, Arts et Métiers ParisTech

  23. Gogos G (2004) Bubble removal in rotational molding. Polym Eng Sci 44(2):388–394. doi:10.1002/pen.20035

    Article  Google Scholar 

  24. Xu L, Crawford RJ (1993) Analysis of the formation and removal of gas bubbles in rotationally moulded thermoplastics. J Mater Sci 28(8):2067–2074. doi:10.1007/bf00367563

    Article  Google Scholar 

  25. AG Spence (1994) Analysis of bubble formation and removal in rotationally moulded products. PhD thesis, The Queen’s University of Belfast

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidi, A., Farzaneh, S., Nony, F. et al. Modelling of sintering during rotational moulding of the thermoplastic polymers. Int J Mater Form 9, 519–530 (2016). https://doi.org/10.1007/s12289-015-1239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-015-1239-6

Keywords

Navigation