Skip to main content
Log in

Numerical assessment of springback for the deep drawing process by level set interpolation using shape manifolds

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

In this paper, we introduce an original shape representation approach for post-springback characterization based on the automatic generation of parameterized level set functions. The central idea is the concept of the shape manifold representing the design domain in the reduced-order shape-space. Performing Proper Orthogonal Decomposition on the shapes followed by using the Diffuse Approximation allows us to efficiently reduce the problem dimensionality and to interpolate uniquely between admissible input shapes, while also determining the smallest number of parameters needed to characterize the final formed shape. We apply this methodology to the problem of springback assessment for the deep drawing operation of metal sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Eggertsen PA, Mattiasson K (2009) Int J Mech Sci 51(7):547

    Article  Google Scholar 

  2. Teimouri R, Baseri H, Rahmani B, Bakhshi-Jooybari M (2012) Int J Mater Form 1–12. doi:10.1007/s12289-012-1117-4

  3. D’Acquisto L, Fratini L (2001) J Manuf Process 3(1):29

    Article  Google Scholar 

  4. Le Quilliec G, Breitkopf P, Roelandt J, Juillard P (2013) Int J Mater Form 1–12. doi:10.1007/s12289-012-1122-7

  5. Lebon J, Le Quilliec G, Breitkopf P, Filomeno Coelho R, Villon P (2013) Int J Mater Form1–13. doi:10.1007/s12289-013-1126-y

  6. Zhang WH, Beckers P, Fleury C (1995) Int J Numer Methods Eng 38(13):2283

    Article  MATH  Google Scholar 

  7. Raghavan B, Breitkopf P, Tourbier Y, Villon P (2013) Struct Multidiscip Optim doi:10.1007/s00158-013-0942-5

    Google Scholar 

  8. Oshier S, Sethian JA (1988) J Comput Phys 79:12

    Article  MathSciNet  Google Scholar 

  9. Allaire G, Jouve F, Toader AM (2004) J Comput Phys 194(1):363

    Article  MATH  MathSciNet  Google Scholar 

  10. Murat F, Simon J (1976) Pre-publication du laboratoire d’analyse numerique, vol 76015. Universite de Paris, p 6

  11. Moes N, Stolz C, Bernard P, Chevaugeon N (2011) Int J Numer Methods Eng 86(3):358

    Article  MATH  MathSciNet  Google Scholar 

  12. Legrain G, Cartraud P, Perreard I, Moes N (2011) Int J Numer Methods Eng 86(7):915

    Article  MATH  Google Scholar 

  13. Duvigneau R (2006) INRIA research report RR-5949

  14. Xie X, Mirmehdi M (2011) Image Vis Comput 29(2–3):167

    Article  Google Scholar 

  15. Wang S, Lim K, Khoo B, Wang M (2007) J Comput Phys 221(1):395

    Article  MATH  MathSciNet  Google Scholar 

  16. Forrester AIJ, Keane AJ (2009) Prog Aerosp Sci 45:50

    Article  Google Scholar 

  17. Breitkopf P, Naceur H, Rassineux A, Villon P (2005) Comput Struct 83(17–18):1411

    Article  Google Scholar 

  18. Willcox K, Peraire J (2002) AIAA J 40(11):2323

    Article  Google Scholar 

  19. Berkooz G, Holmes P, Lumley JL (1993) Annu Rev Fluid Mech 25(1):539

    Article  MathSciNet  Google Scholar 

  20. Cordier L, El Majd BA, Favier J (2010) Int J Numer Methods Fluids 63(2):269

    MATH  MathSciNet  Google Scholar 

  21. Audouze C, De Vuyst F, Nair P (2009) Int J Numer Methods Eng 80(8):1025

    Article  MATH  MathSciNet  Google Scholar 

  22. Raghavan B, Breitkopf P (2012) Engineering with Computers. doi:10.1007/s00366-012-0263-0

  23. Chinesta F, Ammar A, Cueto E (2010) Int J Numer Methods Eng 83(8–9):1114

    Article  MATH  MathSciNet  Google Scholar 

  24. Chinesta F, Ladeveze P, Cueto E (2011) Archives Comput Methods Eng 18(4):395

    Article  Google Scholar 

  25. Ghnatios C, Chinesta F, Cueto E, Leygue A, Breitkopf P, Villon P (2011) Compos A 42:1169

    Article  Google Scholar 

  26. Ghnatios C, Masson F, Huerta A, Cueto E, Leygue A, Chinesta F (2012) Comput Methods Appl Mech Eng 213:29

    Article  Google Scholar 

  27. Hamdaoui M, Le Quilliec G, Breitkopf P, Villon P (2013) Int J Mater Form. doi:10.1007/s12289-013-1132-0

    Google Scholar 

  28. Raghavan B, Breitkopf P, Villon P (2010) Eur J Comput Mech 19(5–7):671

    Google Scholar 

  29. Raghavan B, Xiao M, Breitkopf P, Villon P (2012) Eur J Comput Mech 21(3–6):325

    Google Scholar 

  30. Raghavan B, Xia L, Breitkopf P, Rassineux A, Villon P (2013) Comput Methods Appl Mech Eng 265:174. doi:10.1016/j.cma.2013.06.010

    Article  MATH  MathSciNet  Google Scholar 

  31. Nayroles B, Touzot G, Villon P (1992) Comput Mech 10(5):307

    Article  MATH  Google Scholar 

  32. Millan D, Rosolen A, Arroyo M (2013) Int J Numer Methods Eng 93(7):685

    Article  MathSciNet  Google Scholar 

  33. Millan D, Rosolen A, Arroyo M (2013) Comput Methods Appl Mech Eng 261–262(7):181

    MathSciNet  Google Scholar 

  34. Jan S, Zolesio J (1992) Introduction to shape optimization. Springer, Berlin

    MATH  Google Scholar 

  35. Schulz V (2012) A Riemannian view on shape optimization. Forschungsbericht / Universität Trier, Mathematik, Informatik. Found Comput Math 12–1. arXiv:1203.1493

  36. Fukunaga K, Olsen D (1971) IEEE Trans Comput 20:176

    Article  MATH  Google Scholar 

  37. Breitkopf P, Rassineux A, Touzot G, Villon P (2000) Int J Numer Methods Eng 48(3):451

    Article  MATH  Google Scholar 

  38. Nielsen KB, Br¿nnberg N (1993) Simulation of the 2D draw bending process: numisheet benchmark. In: Makinouchi A, Nakamachi E, Onate E, Wagoner RK (eds) Proceedings of the 2nd international conference NUMISHEET ’93: Numisheet. Tokyo

  39. Hallquist JO (2006) LS-DYNA theory manual. Livermore Software Technology Corporation

  40. Chung K, Lee M, Kim D, Kim C, Wenner ML, Barlat F (2005) Int J Plast 21(5):861

    MATH  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

The results in this paper were obtained as part of the OASIS project, supported by OSEO within the contract FUI no. F1012003Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Breitkopf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghavan, B., Le Quilliec, G., Breitkopf, P. et al. Numerical assessment of springback for the deep drawing process by level set interpolation using shape manifolds. Int J Mater Form 7, 487–501 (2014). https://doi.org/10.1007/s12289-013-1145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-013-1145-8

Keywords

Navigation