Skip to main content

Advertisement

Log in

Role of circ-FOXO3 and miR-23a in radiosensitivity of breast cancer

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Identifying the radiosensitivity of cells before radiotherapy (RT) in breast cancer (BC) patients allows appropriate switching between routinely used treatment regimens and reduces adverse side effects in exposed patients. In this study, blood was collected from 60 women diagnosed with Invasive Ductal Carcinoma (IDC) BC and 20 healthy women. To predict cellular radiosensitivity, a standard G2-chromosomal assay was performed. From these 60 samples, 20 BC patients were found to be radiosensitive based on the G2 assay. Therefore, molecular studies were finally performed on two equal groups (20 samples each) of patients with and without cellular radiosensitivity. QPCR was performed to examine the expression levels of circ-FOXO3 and miR-23a in peripheral blood mononuclear cells (PBMCs) and RNA sensitivity and specificity were determined by plotting Receiver Operating Characteristic (ROC) curves. Binary logistic regression was performed to identify RNA involvement in BC and cellular radiosensitivity (CR) in BC patients. Meanwhile, qPCR was used to compare differential RNA expression in the radiosensitive MCF-7 and radioresistant MDA-MB-231 cell lines. An annexin -V FITC/PI binding assay was used to measure cell apoptosis 24 and 48 h after 2 Gy, 4 Gy, and 8 Gy gamma-irradiation. Results indicated that circ-FOXO3 was downregulated and miR-23a was upregulated in BC patients. RNA expression levels were directly associated with CR. Cell line results showed that circ-FOXO3 overexpression induced apoptosis in the MCF-7 cell line and miR-23a overexpression inhibited apoptosis in the MDA-MB-231 cell line. Evaluation of the ROC curves revealed that both RNAs had acceptable specificity and sensitivity in predicting CR in BC patients. Binary logistic regression showed that both RNAs were also successful in predicting breast cancer. Although only circ-FOXO3 has been shown to predict CR in BC patients, circ-FOXO3 may function as a tumor suppressor and miR-23a may function as oncomiR in BC. Circ-FOXO3 and miR-23a may be promising potential biomarkers for BC prediction. Furthermore, Circ-FOXO3 could be a potential biomarker for predicting CR in BC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data would be available on request.

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence based clinical guidelines. Cancer. 2005;104:1129–37.

    Article  PubMed  Google Scholar 

  3. Early Breast Cancer Trialists’ Collaborative Group. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 801 women in 17 randomized trials. Lancet. 2011;378:1707–16.

    Article  Google Scholar 

  4. Rattay T, Talbot C. Finding the genetic determinants of adverse reactions to radiotherapy. Clin Oncol (R Coll Radiol). 2014;26:301–8.

    Article  CAS  PubMed  Google Scholar 

  5. West CM, Barnett GC. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med. 2011;3:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuo SH, Huang CS. Association between radiosensitivity and molecular subtypes in patients with early-stage breast cancer and lymph node-negative status. Trans Cancer Res. 2017;1(6):9.

    Google Scholar 

  7. Meattini I, Francolini G, Livi L. Radiosensitivity in the breast cancer management scenario: another step forward? J Thorac Dis. 2016;8(10):E1361.

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Ruyck K, de Gelder V, Van Eijkeren M, Boterberg T, De Neve W, Vral A, et al. Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition? Br J Cancer. 2008;98:1723–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Scott D, Barber JBP, Spreadborough AR, Burril W, Roberts SA. Increased chromosomal radiosensitivity in breast cancer patients: a comparison of the two assays. Int J Radiat Biol. 1999;75:1–10.

    Article  CAS  PubMed  Google Scholar 

  10. Baeyens A, Thierens H, Claes K, Poppe B, Messiaen L, De Ridder L, Vral A. Chromosomal radiosensitivity in breast cancer patients with a known or putative genetic predisposition. Br J Cancer. 2002;87:1379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Terzoudi GI, Hatzi VI, Barszczewska K, Manola KN, Stavropoulou C, Angelakis P, et al. G2-checkpoint abrogation in irradiated lymphocytes: A new cytogenetic approach to assess individual radiosensitivity and predisposition to cancer. Int J Oncol. 2009;35:1223–30.

    CAS  PubMed  Google Scholar 

  12. Parshad R, Sanford KK, Jones GM. Chromatid damage after G2 phase x-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair. Proc Natl Acad Sci U S A. 1983;80:5612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mozdarani H, Bryant PE. Kinetics of chromatid aberrations in G2 ataxia- telangiectasia cells exposed to X-rays and ara A. Int J Radiat Biol. 1989;55:71–84.

    Article  CAS  PubMed  Google Scholar 

  14. Mahmoodi M, Abolhassani H, Mozdarani H, Rezaei N, Azizi G, et al. In vitro chromosomal radiosensitivity in patients with common variable immunodeficiency. Cent Eur J Immunol. 2018;43:155–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mozdarani H, Kiaee F, Fekrvand S, Azizi G, Yazdani R, et al. G2-lymphocyte chromosomal radiosensitivity in patients with LPS responsive beige-like anchor protein (LRBA) deficiency. Int J Radiat Biol. 2019;95:680–90.

    Article  CAS  PubMed  Google Scholar 

  16. Amirifar P, Mozdarani H, Yazdani R, Kiaei F, Moeini Shad T, et al. Effect of class switch recombination defect on the phenotype of ataxia-telangiectasia patients. Immunol Invest. 2020;50:1–15.

    Google Scholar 

  17. Scott D. Chromosomal radiosensitivity, cancer predisposition and response to radiotherapy. Strahlenther Onkol. 2000;176:229–34.

    Article  CAS  PubMed  Google Scholar 

  18. Mozdarani H, Ziaee Mashhadi AH, Alimohammadi Z. G2 chromosomal radio sensitivity and background frequency of sister chromatid exchanges of peripheral blood lymphocytes of breast cancer patients. Int J Radiat Res. 2011;9:167–74.

    Google Scholar 

  19. Mozdarani H, Salimi M, Bakhtari N. Inherent radiosensitivity and its impact on breast cancer chemo-radiotherapy. Int J Radiat Res. 2017;15(4):325–41.

    Google Scholar 

  20. Vignard J, Mirey G, Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol. 2013;108:362–9.

    Article  CAS  PubMed  Google Scholar 

  21. Löbrich M, Jeggo P. A process of resection-dependent nonhomologous end joining involving the goddess artemis. Trends Biochem Sci. 2017;42:690–701.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bryant PE. Mechanisms of radiation-induced chromatid breaks. Mutat Res. 1998;404:107–11.

    Article  CAS  PubMed  Google Scholar 

  23. Bryant PE, Mozdarani H. Mechanisms underlying the conversion of DNA double-strand breaks into chromatid breaks. Mutat Res. 2010;701:23–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu X, Li F, Huang Q, Zhang Z, Zhou L, et al. Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res. 2017;27:764–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin J, Cai D, Li W, Yu T, Mao H, Jiang S, Xiao B. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin Biochem. 2019;74:60–8.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:1–3.

    Article  Google Scholar 

  28. Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun. 2022;13:1–5.

    Article  CAS  Google Scholar 

  29. Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19:188–206.

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Dong X, Cheng H, Zheng C, Chen Z, Rodríguez TC, et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat Biotechnol. 2022;4:1–6.

    CAS  Google Scholar 

  31. Attwaters M. In vivo RNA base editing with circular RNAs. Nat Rev Genet. 2022;23:196–7.

    Article  CAS  PubMed  Google Scholar 

  32. He J, Xie Q, Xu H, Li J, Li Y. Circular RNAs and cancer. Cancer Lett. 2017;396:138–44.

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, et al. Best practice standards for circular RNA research. Nat Methods. 2022;26:1–3.

    Google Scholar 

  34. Yang Z, Huang C, Wen X, Liu W, Huang X, Li Y, Zang J, et al. Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion. Mol Ther. 2022;30:1275–87.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou J, Zhou LY, Tang X, Zhang J, Zhai LL, Yi YY, et al. Circ-Foxo3 is positively associated with the Foxo3 gene and leads to better prognosis of acute myeloid leukemia patients. BMC Cancer. 2019;19:1–1.

    Article  Google Scholar 

  36. Kong Z, Wan X, Lu Y, Zhang Y, Huang Y, Xu Y, et al. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J Cell Mol Med. 2020;24:799–813.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Ge P, Zhou D, Xing R, Bai L. Circular RNA FOXO3 accelerates glycolysis and improves cisplatin sensitivity in lung cancer cells via the miR-543/Foxo3 axis. Oncol Lett. 2021;22:1.

    Article  Google Scholar 

  38. Nair AA, Niu N, Tang X, Thompson KJ, Wang L, Kocher JP, et al. Circular RNAs and their associations with breast cancer subtypes. Oncotarget. 2016;7:80967.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smit L, Berns K, Spence K, Ryder WD, Zeps N, Madiredjo M, et al. An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation. Oncotarget. 2016;7:2596.

    Article  PubMed  Google Scholar 

  40. Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24:357–70.

    Article  CAS  PubMed  Google Scholar 

  41. Wang C, Tao W, Ni S, Chen Q. Circular RNA circ-Foxo3 induced cell apoptosis in urothelial carcinoma via interaction with miR-191-5p. Onco Targets Ther. 2019;12:8085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kong Z, Wan X, Lu Y, Zhang Y, Huang Y, Xu Y, Liu Y, et al. Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. J Cell Mol Med. 2020;24:799–813.

    Article  CAS  PubMed  Google Scholar 

  43. Qiu Y, Xie X, Lin L. circFOXO3 protects cardiomyocytes against radiation-induced cardiotoxicity. Mol Med Rep. 2021;23:177.

    Article  CAS  PubMed  Google Scholar 

  44. Xing Y, Zha WJ, Li XM, Li H, Gao F, Ye T, et al. Circular RNA circ-Foxo3 inhibits esophageal squamous cell cancer progression via the miR-23a/PTEN axis. J Cell Biochem. 2020;121:2595–605.

    Article  CAS  PubMed  Google Scholar 

  45. Wang N, Tan HY, Feng YG, Zhang C, Chen F, Feng Y. microRNA-23a in human cancer: its roles, mechanisms and therapeutic relevance. Cancers (Basel). 2018;11:7.

    Article  PubMed  Google Scholar 

  46. Wang N, Zhu M, Tsao SW, Man K, Zhang Z, Feng Y. MiR-23a-mediated inhibition of topoisomerase 1 expression potentiates cell response to etoposide in human hepatocellular carcinoma. Mol Cancer. 2013;12:1. https://doi.org/10.1186/1476-4598-12-119.

    Article  CAS  Google Scholar 

  47. Li J, Aung LH, Long B, Qin D, An S, Li P. miR-23a binds to p53 and enhances its association with miR-128 promoter. Sci Rep. 2015;5:1–3. https://doi.org/10.1038/srep16422.

    Article  CAS  Google Scholar 

  48. Chen G, Li Y, He YI, Zeng B, Yi C, Wang C, et al. Upregulation of circular RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation. Mol Ther Nucleic Acids. 2020;19:961–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jia-Quan Q, Hong-Mei Y, Xu Y, Li-Na L, Jin-Feng Z, Ta X, et al. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget. 2015;6:28341.

    Article  PubMed Central  Google Scholar 

  50. Zheng Y, Liu L, Chen C, Ming P, Huang Q, Li C, et al. The extracellular vesicles secreted by lung cancer cells in radiation therapy promote endothelial cell angiogenesis by transferring miR-23a. PeerJ. 2017;5: e3627.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Barnett G, Wilkinson J, Moody A, Wilson C, Twyman N, et al. The Cambridge breast intensity-modulated radiotherapy trial: patient-and treatment-related factors that influence late toxicity. Clin Oncol (R Coll Radiol). 2011;23:662–73.

    Article  CAS  PubMed  Google Scholar 

  52. Ernestos B, Nikolaos P, Koulis G, Eleni R, Konstantinos B, et al. Increased chromosomal radiosensitivity in women carrying BRCA1/BRCA2 mutations assessed with the G2 assay. Int J Radiat Oncol Biol Phys. 2010;76:1199–205.

    Article  CAS  PubMed  Google Scholar 

  53. Terzoudi ITJ, Hain J, Vrouvas J, Margaritis K, Donta-Bakoyianni C, et al. Increased G2 chromosomal radiosensitivity in cancer patients: the role of cdk1/cyclin-B activity level in the mechanisms involved. Int J Radiat Biol. 2000;76:607–15.

    Article  CAS  PubMed  Google Scholar 

  54. Riches A, Bryant P, Steel C, Gleig A, Robertson A, et al. Chromosomal radiosensitivity in G 2-phase lymphocytes identifies breast cancer patients with distinctive tumour characteristics. Br J Cancer. 2001;85:1157–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scott D, Spreadborough A, Levine E, Roberts SA. Genetic predisposition in breast cancer. Lancet. 1994;344:1444.

    Article  CAS  PubMed  Google Scholar 

  56. Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 2015;16:18–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Zhao H, Zhang L. Identification of the tumor-suppressive function of circular RNA FOXO3 in non-small cell lung cancer through sponging miR-155. Mol Med Rep. 2018;17:7692–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu M, Zhao Y, Xu F, Wang Y, Xiang J, Chen D. The expression and prognosis of FOXO3a and Skp2 in human ovarian cancer. Med Oncol. 2012;29:3409–15.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou J, Zhou LY, Tang X, Zhang J, Zhai LL, Yi YY, et al. Circ-Foxo3 is positively associated with the Foxo3 gene and leads to better prognosis of acute myeloid leukemia patients. BMC Cancer. 2019;19:930.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shen Z, Zhou L, Zhang C, Xu J. Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett. 2020;468:88–101.

    Article  CAS  PubMed  Google Scholar 

  61. Chen P, He YH, Huang X, Tao SQ, Wang XN, Yan H, et al. MiR-23a modulates X-linked inhibitor of apoptosis-mediated autophagy in human luminal breast cancer cell lines. Oncotarget. 2017;8:80709.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ma F, Li W, Liu C, Li W, Yu H, Lei B, et al. MiR-23a promotes TGF-β1-induced EMT and tumor metastasis in breast cancer cells by directly targeting CDH1 and activating Wnt/β-catenin signaling. Oncotarget. 2017;8:69538.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen G, Li Y, He YI, Zeng B, Yi C, Wang C, et al. Upregulation of circular RNA circATRNL1 to sensitize oral squamous cell carcinoma to irradiation. Mol Ther Nucleic Acids. 2010;19:961–73.

    Article  Google Scholar 

  64. Tsai YS, Lin CS, Chiang SL, Lee CH, Lee KW, Ko YC. Areca nut induces miR-23a and inhibits repair of DNA double-strand breaks by targeting FANCG. Toxicol Sci. 2011;123:480–90.

    Article  CAS  PubMed  Google Scholar 

  65. Borgmann K, Röper B, Abd El-Awady R, Brackrock S, Bigalke M, Dörk T, et al. Indicators of late normal tissue response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiother Oncol. 2002;64:141–52.

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Ma L. Efficacy of chemotherapy for lymph node-positive luminal A subtype breast cancer patients: an updated meta-analysis. World J Surg Oncol. 2020;18:1–1.

    Article  CAS  Google Scholar 

  67. Negi P, Kingsley PA, Jain K, Sachdeva J, Srivastava H, Marcus S, et al. Survival of triple negative versus triple positive breast cancers comparison and contrast. Asian Pac J Cancer Prev. 2016;17:3911–6.

    PubMed  Google Scholar 

  68. Jang Y, Jung H, Kim HN, Seo Y, Alsharif E, Nam SJ, et al. Clinicopathologic characteristics of HER2-positive pure mucinous carcinoma of the breast. J Pathol Transl Med. 2020;54:95–102.

    Article  PubMed  Google Scholar 

  69. Rao D, Yu C, Sheng J, Lv E, Huang W. The Emerging Roles of circFOXO3 in Cancer. Front Cell Dev Biol. 2021;9:659417.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yang W, Du WW, Li X, Yee AJ, Yang BB. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene. 2016;35:3919–31.

    Article  CAS  PubMed  Google Scholar 

  71. Oikawa S, Wada S, Lee M, Maeda S, Akimoto T. Role of endothelial microRNA-23 clusters in angiogenesis in vivo. Am J Physiol Heart Circ Physiol. 2018;315:H838–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the research department of the Faculty of Medical Sciences of Tarbiat Modares University, Tehran, Iran. The authors sincerely appreciate the head and staff of the Oncology Department of Imam Khomeini Hospital for their valuable cooperation. The authors also thank all patients and healthy volunteers who participated in this study. We also thank Mr. H. Nosrati for the irradiation of blood and cell line samples.

Funding

This research was supported by a grant (Grant Number: IG-39711) from the research department of the Tarbiat Modares University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Supervision and study design [HM]. Material preparation, data collection, and analysis were done by [EA], and [HM]. The first draft of the manuscript was written by [EA] and editing was performed by [BA and HM]. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Mozdarani.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were under the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

It was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, E., Mozdarani, H. & Alizadeh, B.Z. Role of circ-FOXO3 and miR-23a in radiosensitivity of breast cancer. Breast Cancer 30, 714–726 (2023). https://doi.org/10.1007/s12282-023-01463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-023-01463-4

Keywords

Navigation