Skip to main content

Advertisement

Log in

The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis

  • Special Feature
  • Should we treat minimal breast cancer lesions?
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Transforming growth factor-β (TGF-β) ligand is a multifunctional growth factor that regulates various cell behavior, such as cell proliferation, differentiation, migration, and apoptosis. Because TGF-β is a potent growth inhibitor, abnormalities in TGF-β signaling result in carcinogenesis. In addition to tumor suppressor function, TGF-β acts as an oncogenic factor. In particular, TGF-β signaling plays an important role during metastasis of breast cancer. Recently, epithelial-mesenchymal transition (EMT) has been shown to confer malignant properties such as cell motility and invasiveness to cancer cells and plays crucial roles during cancer metastasis. Moreover, breast stem-like cells exhibit EMT properties. Because TGF-β is a potent regulator of EMT as well as cell stemness, TGF-β signaling might play a crucial role in the regulation of breast cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Feng XH, Derynck R. Specificity and versatility in tgf-β signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–93.

    Article  PubMed  CAS  Google Scholar 

  2. Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 2002;12:22–9.

    Article  PubMed  CAS  Google Scholar 

  3. Bierie B, Moses HL. TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6:506–20.

    Article  PubMed  CAS  Google Scholar 

  4. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.

    Article  PubMed  CAS  Google Scholar 

  5. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    Article  PubMed  CAS  Google Scholar 

  6. Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene. 2008;27:6322–33.

    Article  PubMed  CAS  Google Scholar 

  7. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.

    Article  PubMed  CAS  Google Scholar 

  8. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98:1544–9.

    Article  PubMed  CAS  Google Scholar 

  9. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103:197–206.

    Article  PubMed  CAS  Google Scholar 

  10. Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.

    Article  PubMed  CAS  Google Scholar 

  11. Inoue Y, Imamura T. Regulation of TGF-β family signaling by E3 ubiquitin ligases. Cancer Sci. 2008;99:2107–12.

    Article  PubMed  CAS  Google Scholar 

  12. Ikushima H, Miyazono K. Cellular context-dependent “colors” of transforming growth factor-beta signaling. Cancer Sci. 2010;101:306–12.

    Article  PubMed  CAS  Google Scholar 

  13. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-β superfamily signalling. Genes Cells. 2002;7:1191–204.

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell. 1997;89:1165–73.

    Article  PubMed  CAS  Google Scholar 

  15. Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature. 1997;389:622–66.

    Article  PubMed  CAS  Google Scholar 

  16. Takase M, Imamura T, Sampath TK, Takeda K, Ichijo H, Miyazono K, et al. Induction of Smad6 mRNA by bone morphogenetic proteins. Biochem Biophys Res Commun. 1998;244:26–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-β signaling. J Cell Biol. 2001;155:1017–27.

    Article  PubMed  CAS  Google Scholar 

  18. Seoane J, Le HV, Shen L, Anderson SA, Massagué J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 2004;117:211–23.

    Article  PubMed  CAS  Google Scholar 

  19. Gomis RR, Alarcón C, Nadal C, Van Poznak C, Massagué J. C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell. 2006;10:203–14.

    Article  PubMed  CAS  Google Scholar 

  20. Feng XH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-β. EMBO J. 2000;19:5178–93.

    Article  PubMed  CAS  Google Scholar 

  21. Pardali K, Kurisaki A, Morén A, ten Dijke P, Kardassis D, Moustakas A. Role of Smad proteins and transcription factor Sp1 in p21Waf1/Cip1 regulation by transforming growth factor-β. J Biol Chem. 2000;275:29244–56.

    Article  PubMed  CAS  Google Scholar 

  22. Koinuma D, Tsutsumi S, Kamimura N, Taniguchi H, Miyazawa K, Sunamura M, et al. ChIP-chip analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in TGF-β signaling. Mol Cell Biol. 2009;29:172–86.

    Article  PubMed  CAS  Google Scholar 

  23. Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as Smad cofactors linking the TGFβ receptor to c-myc repression. Cell. 2002;110:19–32.

    Article  PubMed  CAS  Google Scholar 

  24. Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, et al. c-myc is a downstream target of the Smad pathway. J Biol Chem. 2002;277:854–61.

    Article  PubMed  CAS  Google Scholar 

  25. Seoane J, Le H-V, Massagué J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature. 2002;419:729–34.

    Article  PubMed  CAS  Google Scholar 

  26. Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol. 2001;3:392–9.

    Article  PubMed  CAS  Google Scholar 

  27. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massagué J. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol. 2001;3:400–8.

    Article  PubMed  CAS  Google Scholar 

  28. Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer. 2005;5:603–14.

    Article  PubMed  CAS  Google Scholar 

  29. Kang Y, Chen CR, Massagué J. A self-enabling TGFβ response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 2003;11:915–26.

    Article  PubMed  CAS  Google Scholar 

  30. Valderrama-Carvajal H, Cocolakis E, Lacerte A, Lee EH, Krystal G, Ali S, et al. Activin/TGF-β induce apoptosis through Smad-dependent expression of the lipid phosphatase SHIP. Nat Cell Biol. 2002;4:963–9.

    Article  PubMed  CAS  Google Scholar 

  31. Ribeiro A, Bronk SF, Roberts PJ, Urrutia R, Gores GJ. The transforming growth factor β1-inducible transcription factor TIEG1, mediates apoptosis through oxidative stress. Hepatology. 1999;30:1490–7.

    Article  PubMed  CAS  Google Scholar 

  32. Wildey GM, Patil S, Howe PH. Smad3 potentiates transforming growth factor β (TGFβ)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. J Biol Chem. 2003;278:18069–77.

    Article  PubMed  CAS  Google Scholar 

  33. Jang CW, Chen CH, Chen CC, Chen JY, Su YH, Chen RH. TGF-β induces apoptosis through Smad-mediated expression of DAP-kinase. Nat Cell Biol. 2002;4:51–8.

    Article  PubMed  CAS  Google Scholar 

  34. Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet. 2001;28:184–7.

    Article  PubMed  CAS  Google Scholar 

  35. Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3.

    Article  PubMed  CAS  Google Scholar 

  36. Liang M, Liang YY, Wrighton K, Ungermannova D, Wang XP, Brunicardi FC, et al. Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2. Mol Cell Biol. 2004;24:7524–37.

    Article  PubMed  CAS  Google Scholar 

  37. Deheuninck J, Luo K. Ski and SnoN, poent negative regulators of TGF-β signaling. Cell Res. 2009;19:47–57.

    Article  PubMed  CAS  Google Scholar 

  38. Levy L, Howell M, Das D, Harkin S, Episkopou V, Hill CS. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol. 2007;27:6068–83.

    Article  PubMed  CAS  Google Scholar 

  39. Kurokawa M, Mitani K, Imai Y, Ogawa S, Yazaki Y, Hirai H. The t(3;21) fusion product, AML/Evi-1, interacts with Smad3 and blocks transforming growth factor-β-mediated growth inhibition of myeloid cells. Blood. 1998;92:4003–12.

    PubMed  CAS  Google Scholar 

  40. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  PubMed  CAS  Google Scholar 

  41. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  PubMed  CAS  Google Scholar 

  42. Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98:1512–20.

    Article  PubMed  CAS  Google Scholar 

  43. Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.

    Article  PubMed  CAS  Google Scholar 

  44. Hurd TW, Gao L, Roh MH, Macara IG, Margolis B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol. 2003;5:137–42.

    Article  PubMed  CAS  Google Scholar 

  45. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.

    Article  PubMed  CAS  Google Scholar 

  46. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 1996;10:2462–77.

    Article  PubMed  CAS  Google Scholar 

  47. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol. 2002;156:299–313.

    Article  PubMed  CAS  Google Scholar 

  48. Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGFβ-induced downregulation of E-cadherin-based cell–cell adhesion depends on PI3-kinase and PTEN. J Cell Sci. 2005;118:4901–12.

    Article  PubMed  CAS  Google Scholar 

  49. Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M. Role of Ras signaling in the induction of Snail by transforming growth factor-β. J Biol Chem. 2009;284:245–53.

    Article  PubMed  CAS  Google Scholar 

  50. Araki S, Eitel JA, Batuello CN, Bijangi-Vishehsaraei K, Xie XJ, Danielpour D, et al. TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. J Clin Invest. 2010;120:290–302.

    Article  PubMed  CAS  Google Scholar 

  51. Kondo H, Guo J, Bringhurst FR. Cyclic adenosine monophosphate/protein kinase A mediates parathyroid hormone/parathyroid hormone-related protein receptor regulation of osteoclastogenesis and expression of RANKL and osteoprotegerin mRNAs by marrow stromal cells. J Bone Miner Res. 2002;17:1667–79.

    Article  PubMed  CAS  Google Scholar 

  52. Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM, et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res. 2006;66:6714–21.

    Article  PubMed  CAS  Google Scholar 

  53. Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S, et al. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-β type I receptor kinase in vivo. Clin Cancer Res. 2006;12:4315–30.

    Article  PubMed  CAS  Google Scholar 

  54. Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K, et al. Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci. 2007;98:127–33.

    Article  PubMed  CAS  Google Scholar 

  55. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  PubMed  CAS  Google Scholar 

  56. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  PubMed  CAS  Google Scholar 

  57. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  58. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  59. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

There are many important papers in this field, and for reasons of space, we have not been able to mention all of them. We apologize to those investigators whose papers could not be cited. This work was supported by KAKENHI (Grants-in-Aid for Scientific Research) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. T.I. was supported by the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Imamura.

About this article

Cite this article

Imamura, T., Hikita, A. & Inoue, Y. The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 19, 118–124 (2012). https://doi.org/10.1007/s12282-011-0321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-011-0321-2

Keywords

Navigation