Skip to main content
Log in

Influence of Serum and Albumin on Echinocandin In Vitro Potency and Pharmacodynamics

  • Pharmacology and Pharmacodynamics of Antifungal Agents (P Gubbins, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The echinocandins target fungi by inhibiting the production of (1,3)-β-d-glucan, an essential component of the fungal cell wall. These agents have less toxicity to mammalian cells, as compared to other antifungals; however, they maintain potent activity against many pathogenic fungi, including polyene- and azole-resistant isolates. Members of this class are highly protein-bound, and the addition of serum or albumin to the growth medium has profound effects on their in vitro potency and pharmacodynamics. In addition, studies have demonstrated an association between in vitro activity, in the presence of serum, and outcomes in animal models of invasive fungal infections. Serum and albumin may also be useful to help detect echinocandin-resistant Candida isolates with point mutations in the gene that encodes for glucan synthase. Thus, in vitro studies evaluating echinocandins in the presence of protein can provide valuable insight regarding their potency and pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Perlin DS. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat. 2007;10:121–30.

    Article  PubMed  CAS  Google Scholar 

  2. Messer SA, Diekema DJ, Boyken L, et al. Activities of micafungin against 315 invasive clinical isolates of fluconazole-resistant Candida spp. J Clin Microbiol. 2006;44:324–6.

    Article  PubMed  CAS  Google Scholar 

  3. Pfaller MA, Boyken L, Hollis RJ, et al. In vitro activities of anidulafungin against more than 2,500 clinical isolates of Candida spp., including 315 isolates resistant to fluconazole. J Clin Microbiol. 2005;43:5425–7.

    Article  PubMed  CAS  Google Scholar 

  4. Pfaller MA, Marco F, Messer SA, Jones RN. In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn Microbiol Infect Dis. 1998;30:251–5.

    Article  PubMed  CAS  Google Scholar 

  5. Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–9.

    Article  PubMed  CAS  Google Scholar 

  6. Kuse ER, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369:1519–27.

    Google Scholar 

  7. Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–93.

    Article  PubMed  CAS  Google Scholar 

  8. Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–82.

    Article  PubMed  CAS  Google Scholar 

  9. Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J Clin Microbiol. 2008;46:150–6.

    Article  PubMed  CAS  Google Scholar 

  10. Pfaller MA, Jones RN, Doern GV, et al. International surveillance of blood stream infections due to Candida species in the European SENTRY Program: species distribution and antifungal susceptibility including the investigational triazole and echinocandin agents. SENTRY Participant Group (Europe). Diagn Microbiol Infect Dis. 1999;35:19–25.

    Article  PubMed  CAS  Google Scholar 

  11. Arevalo MP, Carrillo-Munoz AJ, Salgado J, et al. Antifungal activity of the echinocandin anidulafungin (VER002, LY-303366) against yeast pathogens: a comparative study with M27-A microdilution method. J Antimicrob Chemother. 2003;51:163–6.

    Article  PubMed  CAS  Google Scholar 

  12. Ernst EJ, Roling EE, Petzold CR, et al. In vitro activity of micafungin (FK-463) against Candida spp.: microdilution, time-kill, and postantifungal-effect studies. Antimicrob Agents Chemother. 2002;46:3846–53.

    Article  PubMed  CAS  Google Scholar 

  13. Andes D, Diekema DJ, Pfaller MA, et al. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother. 2010;54:2497–506.

    Article  PubMed  CAS  Google Scholar 

  14. Louie A, Deziel M, Liu W, et al. Pharmacodynamics of caspofungin in a murine model of systemic candidiasis: importance of persistence of caspofungin in tissues to understanding drug activity. Antimicrob Agents Chemother. 2005;49:5058–68.

    Article  PubMed  CAS  Google Scholar 

  15. Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. Attenuation of the activity of caspofungin at high concentrations against candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother. 2005;49:5146–8.

    Article  PubMed  CAS  Google Scholar 

  16. Wiederhold NP, Kontoyiannis DP, Chi J, et al. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity. J Infect Dis. 2004;190:1464–71.

    Article  PubMed  CAS  Google Scholar 

  17. Andes D, Diekema DJ, Pfaller MA, et al. In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52:539–50.

    Article  PubMed  CAS  Google Scholar 

  18. Andes DR, Diekema DJ, Pfaller MA, et al. In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52:3497–503.

    Article  PubMed  CAS  Google Scholar 

  19. Roling EE, Klepser ME, Wasson A, et al. Antifungal activities of fluconazole, caspofungin (MK0991), and anidulafungin (LY 303366) alone and in combination against Candida spp. and Crytococcus neoformans via time-kill methods. Diagn Microbiol Infect Dis. 2002;43:13–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ostrosky-Zeichner L, Rex JH, Pappas PG, et al. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother. 2003;47:3149–54.

    Article  PubMed  CAS  Google Scholar 

  21. Odds FC, Motyl M, Andrade R, et al. Interlaboratory comparison of results of susceptibility testing with caspofungin against Candida and Aspergillus species. J Clin Microbiol. 2004;42:3475–82.

    Article  PubMed  CAS  Google Scholar 

  22. Cota J, Carden M, Graybill JR, et al. In vitro pharmacodynamics of anidulafungin and caspofungin against Candida glabrata isolates, including strains with decreased caspofungin susceptibility. Antimicrob Agents Chemother. 2006;50:3926–8.

    Article  PubMed  CAS  Google Scholar 

  23. •Wiederhold NP, Najvar LK, Bocanegra R, et al. In vivo efficacy of anidulafungin and caspofungin against Candida glabrata and association with in vitro potency in the presence of sera. Antimicrob Agents Chemother. 2007;51:1616–20. An early in vitro study demonstrating normalization of echinocandin potency in the presence of serum and an assocation with in vivo outcomes.

    Article  PubMed  CAS  Google Scholar 

  24. ••Paderu P, Garcia-Effron G, Balashov S, et al. Serum differentially alters the antifungal properties of echinocandin drugs. Antimicrob Agents Chemother. 2007;51:2253–6. A large in vitro and in vivo study of the influence of serum on the potency of the echinocandins against various Candida species. Aspergillus isolates were also evaluated in vitro.

    Article  PubMed  CAS  Google Scholar 

  25. Odabasi Z, Paetznick V, Rex JH, Ostrosky-Zeichner L. Effects of serum on in vitro susceptibility testing of echinocandins. Antimicrob Agents Chemother. 2007;51:4214–6.

    Article  PubMed  CAS  Google Scholar 

  26. Ishikawa J, Maeda T, Matsumura I, et al. Antifungal activity of micafungin in serum. Antimicrob Agents Chemother. 2009;53:4559–62.

    Article  PubMed  CAS  Google Scholar 

  27. Saribas Z, Yurdakul P, Cetin-Hazirolan G, Arikan-Akdagli S. Influence of serum on in vitro susceptibility testing of echinocandins for Candida parapsilosis and Candida guilliermondii. Mycoses. 2012;55:156–60.

    PubMed  CAS  Google Scholar 

  28. Spreghini E, Orlando F, Tavanti A, et al. In vitro and in vivo effects of echinocandins against Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. J Antimicrob Chemother. 2012;67:2195–202.

    Article  PubMed  CAS  Google Scholar 

  29. Foldi R, Szilagyi J, Kardos G, et al. Effect of 50 % human serum on the killing activity of micafungin against eight Candida species using time-kill methodology. Diagn Microbiol Infect Dis. 2012;73:338–42.

    Article  PubMed  CAS  Google Scholar 

  30. Cafini F, Sevillano D, Alou L, et al. Effect of protein binding on the activity of voriconazole alone or combined with anidulafungin against Aspergillus spp. using a time-kill methodology. Rev Esp Quimioter. 2012;25:47–55.

    PubMed  Google Scholar 

  31. • Garcia-Effron G, Park S, Perlin DS. Improved detection of Candida sp. fks hot spot mutants by using the method of the CLSI M27-A3 document with the addition of bovine serum albumin. Antimicrob Agents Chemother. 2011;55:2245–55. In vitro study demonstrating the influece of bovine serum albumin on echinocandin potency and the potential for identifying Candida isolates with acquired resistance to this antifungal class.

    Article  PubMed  CAS  Google Scholar 

  32. Chiller T, Farrokhshad K, Brummer E, Stevens DA. Influence of human sera on the in vitro activity of the echinocandin caspofungin (MK-0991) against Aspergillus fumigatus. Antimicrob Agents Chemother. 2000;44:3302–5.

    Article  PubMed  CAS  Google Scholar 

  33. •• Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9:929–39. Excellent review of the influence of protein binding on drugs and the free drug hypothesis.

    Article  PubMed  CAS  Google Scholar 

  34. Walker LA, Gow NA, Munro CA. Fungal echinocandin resistance. Fungal genetics and biology. Fungal Genet Biol. 2010;47:117–26.

    Article  PubMed  CAS  Google Scholar 

  35. Castanheira M, Woosley LN, Diekema DJ, et al. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother. 2010;54:2655–9.

    Article  PubMed  CAS  Google Scholar 

  36. Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother. 2006;50:2058–63.

    Article  PubMed  CAS  Google Scholar 

  37. Douglas CM, D'Ippolito JA, Shei GJ, et al. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother. 1997;41:2471–9.

    PubMed  CAS  Google Scholar 

  38. Park S, Kelly R, Kahn JN, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49:3264–73.

    Article  PubMed  CAS  Google Scholar 

  39. Kahn JN, Garcia-Effron G, Hsu MJ, et al. Acquired echinocandin resistance in a Candida krusei isolate due to modification of glucan synthase. Antimicrob Agents Chemother. 2007;51:1876–8.

    Article  PubMed  Google Scholar 

  40. Cleary JD, Garcia-Effron G, Chapman SW, Perlin DS. Reduced Candida glabrata susceptibility secondary to an FKS1 mutation developed during candidemia treatment. Antimicrob Agents Chemother. 2008;52:2263–5.

    Article  PubMed  CAS  Google Scholar 

  41. Garcia-Effron G, Kontoyiannis DP, Lewis RE, Perlin DS. Caspofungin-resistant C. tropicalis breakthrough fungemia in high risk hematology patients. Antimicrob Agents Chemother. 2008;52:4181–3.

    Article  PubMed  CAS  Google Scholar 

  42. Garcia-Effron G, Katiyar SK, Park S, et al. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother. 2008;52:2305–12.

    Article  PubMed  CAS  Google Scholar 

  43. Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125:S3–S13.

    Article  PubMed  CAS  Google Scholar 

  44. Pfaller MA, Diekema DJ, Andes D, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;14:164–76.

    Article  PubMed  CAS  Google Scholar 

  45. Pfaller MA, Boyken L, Hollis RJ, et al. Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol. 2010;48:52–6.

    Article  PubMed  CAS  Google Scholar 

  46. Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006;12:418–25.

    Article  PubMed  CAS  Google Scholar 

  47. • Arendrup MC, Garcia-Effron G, Lass-Florl C, et al. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob Agents Chemother. 2010;54:426–39. An in vitro study comparing the CLSI and EUCAST antifungal susceptibility testing methods in the presence of albumin and the ability of each to detect acquired mechanisms of resistance.

    Article  PubMed  CAS  Google Scholar 

  48. Eagle H, Musselman AD. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. J Exp Med. 1948;88:99–131.

    Article  PubMed  CAS  Google Scholar 

  49. Ramage G, VandeWalle K, Bachmann SP, et al. In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother. 2002;46:3634–6.

    Article  PubMed  CAS  Google Scholar 

  50. Stevens DA, Espiritu M, Parmar R. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother. 2004;48:3407–11.

    Article  PubMed  CAS  Google Scholar 

  51. Antachopoulos C, Meletiadis J, Sein T, et al. Comparative in vitro pharmacodynamics of caspofungin, micafungin, and anidulafungin against germinated and nongerminated Aspergillus conidia. Antimicrob Agents Chemother. 2008;52:321–8.

    Article  PubMed  CAS  Google Scholar 

  52. Gardiner RE, Souteropoulos P, Park S, Perlin DS. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med Mycol. 2005;43 Suppl 1:S299–305.

    Article  PubMed  CAS  Google Scholar 

  53. Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. Eagle-like effect of caspofungin against Candida and Aspergillus spp.: association with homeostatic mechanisms of cell wall integrity (abstract M-1682). Presented at the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, October 30 to November 2, 2004, Washington, DC.

  54. • Shields RK, Nguyen MH, Du C, et al. Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum. Antimicrob Agents Chemother. 2011;55:2641–7. In vitro study demonstrating that the paradoxical effect observed at high echinocandin concentrations is no longer present with the addition of physiological concentrations of serum.

    Article  PubMed  CAS  Google Scholar 

  55. Petraitis V, Petraitiene R, Groll AH, et al. Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother. 2002;46:1857–69.

    Article  PubMed  CAS  Google Scholar 

  56. Clemons KV, Espiritu M, Parmar R, Stevens DA. Comparative efficacies of conventional amphotericin b, liposomal amphotericin B (AmBisome), caspofungin, micafungin, and voriconazole alone and in combination against experimental murine central nervous system aspergillosis. Antimicrob Agents Chemother. 2005;49:4867–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

A. Nasar: none; L. Ryan: none; C.R. Frei: supported by an NIH/KL2 career development award (RR025766) during the time this work was performed. In addition, C.R.F. has received research grants from AstraZeneca, Bristol Myers Squibb, Elan, Ortho-McNeil Janssen, and Pfizer and has served as a scientific consultant/advisor for Forest and Ortho-McNeil Janssen; J.M. Cota: none; N.P. Wiederhold: received research support from Pfizer, Schering-Plough, Merck, Basilea, and Astellas, and has served on advisory boards for Merck, Astellas, Toyama, and Viamet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan P. Wiederhold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasar, A., Ryan, L., Frei, C.R. et al. Influence of Serum and Albumin on Echinocandin In Vitro Potency and Pharmacodynamics. Curr Fungal Infect Rep 7, 89–95 (2013). https://doi.org/10.1007/s12281-013-0136-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-013-0136-z

Keywords

Navigation