Skip to main content
Log in

Recognition of the fungal cell wall by innate immune receptors

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Human cells have a variety of receptors that innately recognize conserved structures on the fungal cell wall. Major receptors include dectin-1, which recognizes β1,3-glucans; mannose receptors, which recognize mannans, and Toll-like receptors 2 and 4. The fungal cell wall is a potent activator of complement, which results in deposition of fragments of the third component of complement that serve as ligands for complement receptors. The nature of the innate immune response is dictated by the relative amount each of these receptors is stimulated. Innate recognition can lead to destruction of the invading fungus and/or initiation of an adaptive immune response. Fungi have a variety of strategies to avoid innate recognition, including masking of ligands and changing their surface properties by phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ruiz-Herrera J: Fungal Cell Wall: Structure, Synthesis, and Assembly. Boca Raton, FL: CRC Press; 1992.

    Google Scholar 

  2. Bowman SM, Free SJ: The structure and synthesis of the fungal cell wall. Bioessays 2006, 28:799–808.

    Article  PubMed  Google Scholar 

  3. Lesage G, Bussey H: Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2006, 70:317–343.

    Article  PubMed  CAS  Google Scholar 

  4. Klis FM, Boorsma A, De Groot PW: Cell wall construction in Saccharomyces cerevisiae. Yeast 2006, 23:185–202.

    Article  PubMed  CAS  Google Scholar 

  5. Latge JP: The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 2007, 66:279–290.

    Article  PubMed  CAS  Google Scholar 

  6. Pitarch A, Nombela C, Gil C: Cell wall fractionation for yeast and fungal proteomics. Methods Mol Biol 2008, 425:217–239.

    Article  PubMed  CAS  Google Scholar 

  7. Chaffin WL: Candida albicans cell wall proteins. Microbiol Mol Biol Rev 2008, 72:495–544.

    Article  PubMed  CAS  Google Scholar 

  8. Mouyna I, Fontaine T: Cell Wall of Aspergillus fumigatus: A Dynamic Structure. Washington, DC: ASM Press; 2009.

    Google Scholar 

  9. Senn L, Robinson JO, Schmidt S, et al.: 1,3-B-d-glucan antigenemia for early diagnosis of invasive fungal infections in neutropenic patients with acute leukemia. Clin Infect Dis 2008, 46:878–885.

    Article  PubMed  CAS  Google Scholar 

  10. Gottar M, Gobert V, Matskevich AA, et al.: Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 2006, 127:1425–1437.

    Article  PubMed  CAS  Google Scholar 

  11. Netea MG, Brown GD, Kullberg BJ, Gow NA: An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 2008, 6:67–78.

    Article  PubMed  CAS  Google Scholar 

  12. Thornton BP, Vetvicka V, Pitman M, et al.: Analysis of the sugar specificity and molecular location of the betaglucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol 1996, 156:1235–1246.

    PubMed  CAS  Google Scholar 

  13. Netea MG, Gow NA, Munro CA, et al.: Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 2006, 116:1642–1650.

    Article  PubMed  CAS  Google Scholar 

  14. Wheeler RT, Fink GR: A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2006, 2:e35.

    Article  PubMed  CAS  Google Scholar 

  15. Rappleye CA, Eissenberg LG, Goldman WE: Histoplasma capsulatum b-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci U S A 2007, 104:1366–1370.

    Article  PubMed  CAS  Google Scholar 

  16. Taylor PR, Tsoni SV, Willment JA, et al.: Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 2007, 8:31–38.

    Article  PubMed  CAS  Google Scholar 

  17. Saijo S, Fujikado N, Furuta T et al.: Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 2007, 8:39–46.

    Article  PubMed  CAS  Google Scholar 

  18. Levitz SM, Specht CA: The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res 2006, 6:513–524.

    Article  PubMed  CAS  Google Scholar 

  19. Mansour MK, Latz E, Levitz SM: Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J Immunol 2006, 176:3053–3061.

    PubMed  CAS  Google Scholar 

  20. Dan JM, Wang JP, Lee CK, Levitz SM: Cooperative stimulation of dendritic cells by Cryptococcus neoformans mannoproteins and CpG oligodeoxynucleotides. PLoS ONE 2008, 3:e2046.

    Article  PubMed  CAS  Google Scholar 

  21. Serrano-Gomez D, Dominguez-Soto A, Ancochea J, et al.: Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol 2004, 173:5635–5643.

    PubMed  CAS  Google Scholar 

  22. Endo Y, Takahashi M, Fujita T: Lectin complement system and pattern recognition. Immunobiology 2006, 211:283–293.

    Article  PubMed  CAS  Google Scholar 

  23. Lillegard JB, Sim RB, Thorkildson P, et al.: Recognition of Candida albicans by mannan-binding lectin in vitro and in vivo. J Infect Dis 2006, 193:1589–1597.

    Article  PubMed  CAS  Google Scholar 

  24. Kozel TR: Activation of the complement system by pathogenic fungi. Clin Microbiol Rev 1996, 9:34–46.

    PubMed  CAS  Google Scholar 

  25. Lemaitre B, Nicolas E, Michaut L, et al.: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996, 86:973–983.

    Article  PubMed  CAS  Google Scholar 

  26. Levitz SM: Interactions of Toll-like receptors with fungi. Microbes Infect 2004, 6:1351–1355.

    Article  PubMed  CAS  Google Scholar 

  27. Shoham S, Huang C, Chen JM, et al.: Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 2001, 166:4620–4626.

    PubMed  CAS  Google Scholar 

  28. Jouault T, Ibata-Ombetta S, Takeuchi O, et al.: Candida albicans phospholipomannan is sensed through Toll-like receptors. J Infect Dis 2003, 188:165–172.

    Article  PubMed  CAS  Google Scholar 

  29. Mambula SS, Sau K, Henneke P, et al.: Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 2002, 277:39320–39326.

    Article  PubMed  CAS  Google Scholar 

  30. Bellocchio S, Montagnoli C, Bozza S, et al.: The contribution of the toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 2004, 172:3059–3069.

    PubMed  CAS  Google Scholar 

  31. Yauch LE, Mansour MK, Shoham S, et al.: Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 2004, 72:5373–5382.

    Article  PubMed  CAS  Google Scholar 

  32. Netea MG, Sutmuller R, Hermann C, et al.: Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 2004, 172:3712–3718.

    PubMed  CAS  Google Scholar 

  33. Sau K, Mambula SS, Latz E, et al.: The antifungal drug amphotericin B promotes inflammatory cytokine release by a Toll-like receptor- and CD14-dependent mechanism. J Biol Chem 2003, 278:37561–37568.

    Article  PubMed  CAS  Google Scholar 

  34. Levitz SM: Genetic predisposition to fungal infections: role of mutations and polymorphisms in immune response genes. Curr Fungal Infect Rep 2007, 1:102–107.

    Google Scholar 

  35. Bochud PY, Chien JW, Marr KA, et al.: Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 2008, 359:1766–1777.

    Article  PubMed  CAS  Google Scholar 

  36. Ramirez-Ortiz ZG, Specht CA, Wang JP, et al.: Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect Immun 2008, 76:2123–2129.

    Article  PubMed  CAS  Google Scholar 

  37. Nakamura K, Miyazato A, Xiao G, et al.: Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway. J Immunol 2008, 180:4067–4074.

    PubMed  CAS  Google Scholar 

  38. Reese TA, Liang HE, Tager AM, et al.: Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 2007, 447:92–96.

    Article  PubMed  CAS  Google Scholar 

  39. Lee CG, Da Silva CA, Lee JY, et al.: Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 2008 (in press).

  40. Zhu Z, Zheng T, Homer RJ, et al.: Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004, 304:1678–1682.

    Article  PubMed  CAS  Google Scholar 

  41. Rydengard V, Shannon O, Lundqvist K, et al.: Histidine-rich glycoprotein protects from systemic Candida infection. PLoS Pathog 2008, 4:e1000116.

    Google Scholar 

  42. Levitz SM: Does amoeboid reasoning explain the evolution and maintenance of virulence factors in Cryptococcus neoformans? Proc Natl Acad Sci U S A 2001, 98:14760–14762.

    Article  PubMed  CAS  Google Scholar 

  43. Hohl TM, Feldmesser M, Perlin DS, Pamer EG: Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis 2008, 198:176–185.

    Article  PubMed  CAS  Google Scholar 

  44. Levitz SM, Tabuni A: Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J Clin Invest 1991, 87:528–535.

    Article  PubMed  CAS  Google Scholar 

  45. Bullock WE, Wright SD: Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J Exp Med 1987, 165:195–210.

    Article  PubMed  CAS  Google Scholar 

  46. Gomez FJ, Pilcher-Roberts R, Alborzi A, Newman SL: Histoplasma capsulatum cyclophilin A mediates attachment to dendritic cell VLA-5. J Immunol 2008, 181:7106–7114.

    PubMed  CAS  Google Scholar 

  47. Brandhorst TT, Wuthrich M, Finkel-Jimenez B, et al.: Exploiting type 3 complement receptor for TNF-alpha suppression, immune evasion, and progressive pulmonary fungal infection. J Immunol 2004, 173:7444–7453.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Levitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitz, S.M., Specht, C.A. Recognition of the fungal cell wall by innate immune receptors. Curr Fungal Infect Rep 3, 179–185 (2009). https://doi.org/10.1007/s12281-009-0023-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-009-0023-9

Keywords

Navigation