Skip to main content
Log in

Identification and Characterization of HEPN-MNT Type II TA System from Methanothermobacter thermautotrophicus ΔH

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Toxin-antitoxin (TA) systems are widespread in bacteria and archaea plasmids and genomes to regulate DNA replication, gene transcription, or protein translation. Higher eukaryotic and prokaryotic nucleotide-binding (HEPN) and minimal nucleotidyltransferase (MNT) domains are prevalent in prokaryotic genomes and constitute TA pairs. However, three gene pairs (MTH304/305, 408/409, and 463/464) of Methanothermobacter thermautotropicus ΔH HEPN-MNT family have not been studied as TA systems. Among these candidates, our study characterizes the MTH463/MTH464 TA system. MTH463 expression inhibited Escherichia coli growth, whereas MTH464 did not and blocked MTH463 instead. Using site-directed MTH463 mutagenesis, we determined that amino acids R99G, H104A, and Y106A from the R[ɸX]4-6H motif are involved with MTH463 cell toxicity. Furthermore, we established that purified MTH463 could degrade MS2 phage RNA, whereas purified MTH464 neutralized MTH463 activity in vitro. Our results indicate that the endonuclease toxin MTH463 (encoding a HEPN domain) and its cognate antitoxin MTH464 (encoding the MNT domain) may act as a type II TA system in M. thermautotropicus ΔH. This study provides initial and essential information studying TA system functions, primarily archaea HEPN-MNT family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Aakre, C. D., Phung, T. N., Huang, D., & Laub, M. T. (2013). A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp. Molecular Cell, 52, 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aizenman, E., Engelberg-Kulka, H., & Glaser, G. (1996). An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3’,5’-bispyrophosphate: A model for programmed bacterial cell death. Proceedings of the National Academy of Sciences of the USA, 93, 6059–6063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anantharaman, V., Makarova, K. S., Burroughs, A. M., Koonin, E. V., & Aravind, L. (2013). Comprehensive analysis of the HEPN superfamily: Identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biology Direct, 8, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews, E. S., & Arcus, V. L. (2015). The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis, 95, 385–394.

    Article  CAS  PubMed  Google Scholar 

  • Aravind, L., & Koonin, E. V. (1999). DNA polymerase β-like nucleotidyltransferase superfamily: Identification of three new families, classification and evolutionary history. Nucleic Acids Research, 27, 1609–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukowski, M., Rojowska, A., & Wladyka, B. (2011). Prokaryotic toxin-antitoxin systems–the role in bacterial physiology and application in molecular biology. Acta Biochimica Polonica, 58, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Chellapandi, P., and Prathiviraj, R. (2020). Methanothermobacter thermautotrophicus strain ΔH as a potential microorganism for bioconversion of CO2 to methane. Journal of CO2 Utilization, 40, 101210.

  • Choi, J. S., Kim, W., Suk, S., Park, H., Bak, G., Yoon, J., & Lee, Y. (2018). The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biology, 15, 1319–1335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, W., Yamaguchi, Y., Lee, J. W., Jang, K. M., Inouye, M., Kim, S. G., Yoon, M. H., & Park, J. H. (2017). Translation-dependent mRNA cleavage by YhaV in Escherichia coli. FEBS Letters, 591, 1853–1861.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National Academy of Sciences of the USA, 98, 14328–14333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culviner, P. H., & Laub, M. T. (2018). Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Molecular Cell, 70, 868–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberg-Kulka, H., Reches, M., Narasimhan, S., Schoulaker-Schwarz, R., Klemes, Y., Aizenman, E., & Glaser, G. (1998). rexB of bacteriophage λ is an anti-cell death gene. Proceedings of the National Academy of Sciences of the USA, 95, 15481–15486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S., & Salmond, G. P. (2009). The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proceedings of the National Academy of Sciences of the USA, 106, 894–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraikin, N., Goormaghtigh, F., & Van Melderen, L. (2020). Type II toxin-antitoxin systems: Evolution and revolutions. Journal of Bacteriology, 202, e00763-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Francuski, D., & Saenger, W. (2009). Crystal structure of the antitoxin-toxin protein complex RelB-RelE from Methanococcus jannaschii. Journal of Molecular Biology, 393, 898–908.

    Article  CAS  PubMed  Google Scholar 

  • Gerdes, K., Bech, F. W., Jørgensen, S. T., Løbner-Olesen, A., Rasmussen, P. B., Atlung, T., Boe, L., Karlstrom, O., Molin, S., & von Meyenburg, K. (1986). Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. The EMBO Journal, 5, 2023–2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes, K., Christensen, S. K., & Løbner-Olesen, A. (2005). Prokaryotic toxin-antitoxin stress response loci. Nature Reviews Microbiology, 3, 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Grynberg, M., Erlandsen, H., & Godzik, A. (2003). HEPN: A common domain in bacterial drug resistance and human neurodegenerative proteins. Trends in Biochemical Sciences, 28, 224–226.

    Article  CAS  PubMed  Google Scholar 

  • Harms, A., Brodersen, D. E., Mitarai, N., & Gerdes, K. (2018). Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Molecular Cell, 70, 768–784.

    Article  CAS  PubMed  Google Scholar 

  • Harms, A., Stanger, F. V., Scheu, P. D., de Jong, I. G., Goepfert, A., Glatter, T., Gerdes, K., Schirmer, T., & Dehio, C. (2015). Adenylylation of gyrase and Topo IV by FicT toxins disrupts bacterial DNA topology. Cell Reports, 12, 1497–1507.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J. Y., & Buskirk, A. R. (2017). A ribosome profiling study of mRNA cleavage by the endonuclease RelE. Nucleic Acids Research, 45, 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Ishida, Y., Inouye, K., Ming, O., & Inouye, M. (2019). A CUGGU/UUGGU-specific MazF homologue from Methanohalobium evestigatum. Biochemical and Biophysical Research Communications, 518, 533–540.

    Article  CAS  PubMed  Google Scholar 

  • Jia, X., Yao, J., Gao, Z., Liu, G., Dong, Y. H., Wang, X., & Zhang, H. (2018). Structure-function analyses reveal the molecular architecture and neutralization mechanism of a bacterial HEPN-MNT toxin-antitoxin system. The Journal of Biological Chemistry, 293, 6812–6823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurėnas, D., Fraikin, N., Goormaghtigh, F., & Van Melderen, L. (2022). Biology and evolution of bacterial toxin-antitoxin systems. Nature Reviews Microbiology, 20, 335–350.

    Article  PubMed  Google Scholar 

  • Jurėnas, D., Van Melderen, L., & Garcia-Pino, A. (2019). Mechanism of regulation and neutralization of the AtaR-AtaT toxin-antitoxin system. Nature Chemical Biology, 15, 285–294.

    Article  PubMed  Google Scholar 

  • Kamruzzaman, M., Wu, A. Y., & Iredell, J. R. (2021). Biological functions of type II toxin-antitoxin systems in bacteria. Microorganisms, 9, 1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaster, A. K., Goenrich, M., Seedorf, H., Liesegang, H., Wollherr, A., Gottschalk, G., & Thauer, R. K. (2011). More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea, 2011, 973848.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimelman, A., Levy, A., Sberro, H., Kidron, S., Leavitt, A., Amitai, G., Yoder-Himes, D. R., Wurtzel, O., Zhu, Y., Rubin, E. M., et al. (2012). A vast collection of microbial genes that are toxic to bacteria. Genome Research, 22, 802–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Mao, L., Zheng, X., Yuan, J., Hu, B., Cai, Y., Xie, H., Peng, X., & Ding, X. (2019). Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H2 and CO2 under different temperature conditions. MicrobiologyOpen, 8, e715.

    Article  Google Scholar 

  • Liu, H., & Naismith, J. H. (2008). An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnology, 8, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve, E., Castro-Camargo, M., & Gerdes, K. (2018). (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell, 172, 1135.

    Article  CAS  PubMed  Google Scholar 

  • Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2009). Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology Direct, 4, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2013). Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Research, 41, 4360–4377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marimon, O., Teixeira, J. M., Cordeiro, T. N., Soo, V. W., Wood, T. L., Mayzel, M., Amata, I., García, J., Morera, A., Gay, M., et al. (2016). An oxygen-sensitive toxin-antitoxin system. Nature Communications, 7, 13634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda, H., & Inouye, M. (2017). Toxins of prokaryotic toxin-antitoxin systems with sequence-specific endoribonuclease activity. Toxins, 9, 140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda, H., Tan, Q., Awano, N., Wu, K. P., & Inouye, M. (2012). YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Molecular Microbiology, 84, 979–989.

    Article  CAS  PubMed  Google Scholar 

  • Mochimaru, H., Yoshioka, H., Tamaki, H., Nakamura, K., Kaneko, N., Sakata, S., Imachi, H., Sekiguchi, Y., Uchiyama, H., & Kamagata, Y. (2007). Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan. Extremophiles, 11, 453–461.

    Article  CAS  PubMed  Google Scholar 

  • Nariya, H., & Inouye, M. (2008). Mazf, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell, 132, 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Ogura, T., & Hiraga, S. (1983). Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proceedings of the National Academy of Sciences of the USA, 80, 4784–4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J. H., Yamaguchi, Y., & Inouye, M. (2011). Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Letters, 585, 2526–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K., & Ehrenberg, M. (2003). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell, 112, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, J., Zhai, Y., Wei, M., Zheng, C., & Jiao, X. (2022). Toxin-antitoxin systems: Classification, biological roles, and applications. Microbiological Research, 264, 127159.

    Article  CAS  PubMed  Google Scholar 

  • Shao, Y., Harrison, E. M., Bi, D., Tai, C., He, X., Ou, H. Y., Rajakumar, K., & Deng, Z. (2011). TADB: A web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Research, 39, D606–D611.

    Article  CAS  PubMed  Google Scholar 

  • Singh, G., Yadav, M., Ghosh, C., & Rathore, J. S. (2021). Bacterial toxin-antitoxin modules: Classification, functions, and association with persistence. Current Research in Microbial Sciences, 2, 100047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, D. R., Doucette-Stamm, L. A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., Gilbert, K., et al. (1997). Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: Functional analysis and comparative genomics. Journal of Bacteriology, 179, 7135–7155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Songailiene, I., Juozapaitis, J., Tamulaitiene, G., Ruksenaite, A., Šulčius, S., Sasnauskas, G., Venclovas, Č, & Siksnys, V. (2020). HEPN-MNT toxin-antitoxin system: The HEPN ribonuclease is neutralized by oligoampylation. Molecular Cell, 80, 955–970.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, A., Pati, S., Kaushik, H., Singh, S., & Garg, L. C. (2021). Toxin-antitoxin systems and their medical applications: Current status and future perspective. Applied Microbiology and Biotechnology, 105, 1803–1821.

    Article  CAS  PubMed  Google Scholar 

  • Takagi, H., Kakuta, Y., Okada, T., Yao, M., Tanaka, I., & Kimura, M. (2005). Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects. Nature Structural & Molecular Biology, 12, 327–331.

    Article  CAS  Google Scholar 

  • Vesper, O., Amitai, S., Belitsky, M., Byrgazov, K., Kaberdina, A. C., Engelberg-Kulka, H., & Moll, I. (2011). Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell, 147, 147–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Lord, D. M., Cheng, H. Y., Osbourne, D. O., Hong, S. H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., et al. (2012). A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nature Chemical Biology, 8, 855–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y., Wei, Y., Shen, Y., Li, X., Zhou, H., Tai, C., Deng, Z., & Ou, H. Y. (2018). TADB 2.0: An updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Research, 46, D749–D753.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y., Nariya, H., Park, J. H., & Inouye, M. (2012). Inhibition of specific gene expressions by protein-mediated mRNA interference. Nature Communications, 3, 607.

    Article  PubMed  Google Scholar 

  • Yamaguchi, Y., Park, J. H., & Inouye, M. (2011). Toxin-antitoxin systems in bacteria and archaea. Annual Review of Genetics, 45, 61–79.

    Article  CAS  PubMed  Google Scholar 

  • Yao, J., Guo, Y., Zeng, Z., Liu, X., Shi, F., & Wang, X. (2015). Identification and characterization of a HEPN-MNT family type II toxin-antitoxin in Shewanella oneidensis. Microbial Biotechnology, 8, 961–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, J., Zhen, X., Tang, K., Liu, T., Xu, X., Chen, Z., Guo, Y., Liu, X., Wood, T. K., Ouyang, S., et al. (2020). Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system. Nucleic Acids Research, 48, 11054–11067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S. P., Wang, Q., Quan, S. W., Yu, X. Q., Wang, Y., Guo, D. D., Peng, L., Feng, H. Y., & He, Y. X. (2020). Type II toxin–antitoxin system in bacteria: Activation, function, and mode of action. Biophysics Reports, 6, 68–79.

    Article  CAS  Google Scholar 

  • Zhang, W., & Wu, Q. (2020). Applications of phage-derived RNA-based technologies in synthetic biology. Synthetic and Systems Biotechnology, 5, 343–360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Inouye, M. (2011). RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Molecular Microbiology, 79, 1418–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01595802)” Rural Development Administration, Republic of Korea, and of the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5362322).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong-Tae Park or Jung-Ho Park.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 496 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Maharjan, A., Im, H.G. et al. Identification and Characterization of HEPN-MNT Type II TA System from Methanothermobacter thermautotrophicus ΔH. J Microbiol. 61, 411–421 (2023). https://doi.org/10.1007/s12275-023-00041-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00041-9

Keywords

Navigation