Skip to main content
Log in

cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor

  • Review
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcription factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in the published article.

References

  • Aiba, H., Nakamura, T., Mitani, H., & Mori, H. (1985). Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli. The EMBO Journal, 4, 3329–3332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arce-Rodríguez, A., Nikel, P. I., Calles, B., Chavarría, M., Platero, R., Krell, T., & de Lorenzo, V. (2021). Low CyaA expression and anti-cooperative binding of cAMP to CRP frames the scope of the cognate regulon of Pseudomonas putida. Environmental Microbiology, 23, 1732–1749.

    Article  PubMed  Google Scholar 

  • Belduz, A. O., Lee, E. J., & Harman, J. G. (1993). Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: Targeting positions 72 and 82 of the cyclic nucleotide binding pocket. Nucleic Acids Research, 21, 1827–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benoff, B., Yang, H., Lawson, C. L., Parkinson, G., Liu, J., Blatter, E., Ebright, Y. W., Berman, H. M., & Ebright, R. H. (2002). Structural basis of transcription activation: The CAP-αCTD-DNA complex. Science, 297, 1562–1566.

    Article  CAS  PubMed  Google Scholar 

  • Busby, S., & Ebright, R. H. (1999). Transcription activation by catabolite activator protein (CAP). Journal Molecular Biology, 293, 199–213.

    Article  CAS  Google Scholar 

  • Chen, S., Gunasekera, A., Zhang, X., Kunkel, T. A., Ebright, R. H., & Berman, H. M. (2001). Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: Alteration of DNA binding specificity through alteration of DNA kinking. Journal Molecular Biology, 314, 75–82.

    Article  CAS  Google Scholar 

  • Cordes, T. J., Worzalla, G. A., Ginster, A. M., & Forest, K. T. (2011). Crystal structure of the Pseudomonas aeruginosa virulence factor regulator. Journal of Bacteriology, 193, 4069–4074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebright, R. H., Cossart, P., Gicquel-Sanzey, B., & Beckwith, J. (1984). Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli. Nature, 311, 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Ebright, R. H., Ebright, Y. W., & Gunasekera, A. (1989). Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. Nucleic Acids Research, 17, 10295–10305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebright, R. H., Kolb, A., Buc, H., Kunkel, T. A., Krakow, J. S., & Beckwith, J. (1987). Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: Altered DNA-sequence-recognition properties of [Val181] CAP and [Leu181] CAP. Proceedings of the National Academy of Sciences of the United States of America, 84, 6083–6087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebright, R. H., Le Grice, S. F., Miller, J. P., & Krakow, J. S. (1985). Analogs of cyclic AMP that elicit the biochemically defined conformational change in catabolite gene activator protein (CAP) but do not stimulate binding to DNA. Journal Molecular Biology, 182, 91–107.

    Article  CAS  Google Scholar 

  • Einav, T., Duque, J., & Phillips, R. (2018). Theoretical analysis of inducer and operator binding for cyclic-AMP receptor protein mutants. PLoS ONE, 13, e0204275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, Y., Zhang, Y., & Ebright, R. H. (2016). Structural basis of transcription activation. Science, 352, 1330–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frendorf, P. O., Lauritsen, I., Sekowska, A., Danchin, A., & Nørholm, M. H. H. (2019). Mutations in the global transcription factor CRP/CAP: Insights from experimental evolution and deep sequencing. Computational and Structural Biotechnology Journal, 17, 730–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garges, S., & Adhya, S. (1985). Sites of allosteric shift in the structure of the cyclic AMP receptor protein. Cell, 41, 745–751.

    Article  CAS  PubMed  Google Scholar 

  • Gartenberg, M. R., & Crothers, D. M. (1988). DNA sequence determinants of CAP-induced bending and protein binding affinity. Nature, 333, 824–829.

    Article  CAS  PubMed  Google Scholar 

  • Gent, M. E., Gronenborn, A. M., Davies, R. W., & Clore, G. M. (1987). Probing the sequence-specific interaction of the cyclic AMP receptor protein with DNA by site-directed mutagenesis. Biochemical Journal, 242, 645–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorshkova, I., Moore, J. L., McKenney, K. H., & Schwarz, F. P. (1995). Thermodynamics of cyclic nucleotide binding to the cAMP receptor protein and its T127L mutant. The Journal of Biological Chemistry, 270, 21679–21683.

    Article  CAS  PubMed  Google Scholar 

  • Gronenborn, A. M., Sandulache, R., Gärtner, S., & Clore, G. M. (1988). Mutations in the cyclic AMP binding site of the cyclic AMP receptor protein of Escherichia coli. Biochemical Journal, 253, 801–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunasekara, S. M., Hicks, M. N., Park, J., Brooks, C. L., Serate, J., Saunders, C. V., Grover, S. K., Goto, J. J., Lee, J. W., & Youn, H. (2015). Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket. The Journal of Biological Chemistry, 290, 26587–32696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardwidge, P. R., Zimmerman, J. M., & Maher, L. J., 3rd. (2002). Charge neutralization and DNA bending by the Escherichia coli catabolite activator protein. Nucleic Acids Research, 30, 1879–1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman, J. G. (2001). Allosteric regulation of the cAMP receptor protein. Biochimica Et Biophysica Acta, 1547, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Harman, J. G., McKenney, K., & Peterkofsky, A. (1986). Structure-function analysis of three cAMP-independent forms of the cAMP receptor protein. The Journal of Biological Chemistry, 261, 16332–16339.

    Article  CAS  PubMed  Google Scholar 

  • Harman, J. G., Peterkofsky, A., & McKenney, K. (1988). Arginine substituted for leucine at position 195 produces a cyclic AMP-independent form of the Escherichia coli cyclic AMP receptor protein. The Journal of Biological Chemistry, 263, 8072–8077.

    Article  CAS  PubMed  Google Scholar 

  • Heyduk, T., & Lee, J. C. (1989). Escherichia coli cAMP receptor protein: Evidence for three protein conformational states with different promoter binding affinities. Biochemistry, 28, 6914–6924.

    Article  CAS  PubMed  Google Scholar 

  • Heyduk, T., Lee, J. C., Ebright, Y. W., Blatter, E. E., Zhou, Y., & Ebright, R. H. (1993). CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature, 364, 548–549.

    Article  CAS  PubMed  Google Scholar 

  • Hicks, M. N., Gunasekara, S., Serate, J., Park, J., Mosharaf, P., Zhou, Y., Lee, J. W., & Youn, H. (2017). Gly184 of the Escherichia coli cAMP receptor protein provides optimal context for both DNA binding and RNA polymerase interaction. Journal of Microbiology, 55, 816–822.

    Article  CAS  PubMed  Google Scholar 

  • Kapanidis, A. N., Ebright, Y. W., Ludescher, R. D., Chan, S., & Ebright, R. H. (2001). Mean DNA bend angle and distribution of DNA bend angles in the CAP-DNA complex in solution. Journal Molecular Biology, 312, 453–468.

    Article  CAS  Google Scholar 

  • Kim, J., Adhya, S., & Garges, S. (1992). Allosteric changes in the cAMP receptor protein of Escherichia coli: Hinge reorientation. Proceedings of the National Academy of Sciences of the United States of America, 89, 9700–9704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb, A., Busby, S., Buc, H., Garges, S., & Adhya, S. (1993). Transcriptional regulation by cAMP and its receptor protein. Annual Review of Biochemistry, 62, 749–797.

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco, M. F., Gárate, F., Engdahl, A. J., & Maillard, R. A. (2017). Asymmetric configurations in a reengineered homodimer reveal multiple subunit communication pathways in protein allostery. The Journal of Biological Chemistry, 292, 6086–6093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauritsen, I., Frendorf, P. O., Capucci, S., Heyde, S. A. H., Blomquist, S. D., Wendel, S., Fischer, E. C., Sekowska, A., Danchin, A., & Nørholm, M. H. H. (2021). Temporal evolution of master regulator Crp identifies pyrimidines as catabolite modulator factors. Nature Communications, 12, 5880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson, C. L., Swigon, D., Murikami, K. S., Darst, S. A., Berman, H. M., & Ebright, R. H. (2004). Catabolite activator protein: DNA binding and transcription activation. Current Opinion in Structural Biology, 14, 10–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, E. J., Glasgow, J., Leu, S. F., Belduz, A. O., & Harman, J. G. (1994). Mutagenesis of the cyclic AMP receptor protein of Escherichia coli: Targeting positions 83, 127 and 128 of the cyclic nucleotide binding pocket. Nucleic Acids Research, 22, 2894–2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S. H., & Lee, J. C. (2002). Communications between the high-affinity cyclic nucleotide binding sites in E. coli cyclic AMP receptor protein: Effect of single site mutations. Biochemistry, 41, 11857–11867.

    Article  CAS  PubMed  Google Scholar 

  • Lindemose, S., Nielsen, P. E., & Møllegaard, N. E. (2008). Dissecting direct and indirect readout of cAMP receptor protein DNA binding using an inosine and 2,6-diaminopurine in vitro selection system. Nucleic Acids Research, 36, 4797–4807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder, J. U. (2010). cGMP production in bacteria. Molecular and Cellular Biochemistry, 334, 215–219.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Hong, C., Huang, R. K., Yu, Z., & Steitz, T. A. (2017). Structural basis of bacterial transcription activation. Science, 358, 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Magasanik, B. (1961). Catabolite repression. Cold Spring Harbor Symposia on Quantitative Biology, 26, 249–256.

    Article  CAS  PubMed  Google Scholar 

  • McKay, D. B., & Steitz, T. A. (1981). Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA. Nature, 290, 744–749.

    Article  CAS  PubMed  Google Scholar 

  • Monod, J., Wyman, J., & Changeux, J. (1965). On the nature of allosteric transitions: A plausible model. Journal Molecular Biology, 12, 88–118.

    Article  CAS  Google Scholar 

  • Moore, J. L., Gorshkova, I. I., Brown, J. W., McKenney, K. H., & Schwarz, F. P. (1996). Effect of cAMP binding site mutations on the interaction of cAMP receptor protein with cyclic nucleoside monophosphate ligands and DNA. The Journal of Biological Chemistry, 271, 21273–21278.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J., Kantorow, M., Vanderzwaag, D., & McKenney, K. (1992). Escherichia coli cyclic AMP receptor protein mutants provide evidence for ligand contacts important in activation. Journal of Bacteriology, 174, 8030–8035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napoli, A. A., Lawson, C. L., Ebright, R. H., & Berman, H. M. (2006). Indirect readout of DNA sequence at the primary-kink site in the CAP-DNA complex: Recognition of pyrimidine-purine and purine-purine steps. Journal Molecular Biology, 357, 173–183.

    Article  CAS  Google Scholar 

  • Parkinson, G., Gunasekera, A., Vojtechovsky, J., Zhang, X., Kunkel, T. A., Berman, H., & Ebright, R. H. (1996a). Aromatic hydrogen bond in sequence-specific protein DNA recognition. Nature Structural Biology, 3, 837–841.

    Article  CAS  PubMed  Google Scholar 

  • Parkinson, G., Wilson, C., Gunasekera, A., Ebright, E. W., Ebright, R. E., & Berman, H. M. (1996b). Structure of CAP-DNA complex at 2.5 Å resolution: A complete picture of the protein DNA interface. Journal Molecular Biology, 260, 395–408.

    Article  CAS  Google Scholar 

  • Passner, J. M., Schultz, S. C., & Steitz, T. A. (2000). Modeling the cAMP induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 Å resolution. Journal Molecular Biology, 304, 847–859.

    Article  CAS  Google Scholar 

  • Passner, J. M., & Steitz, T. A. (1997). The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proceedings of the National Academy of Sciences of the United States of America, 94, 2843–2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovych, N., Tzeng, S. R., Tonelli, M., Ebright, R. H., & Kalodimos, C. G. (2009). Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proceedings of the National Academy of Sciences of the United States of America, 106, 6927–6932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, Y. L., Garges, S., Adhya, S., & Krakow, J. S. (1990). Characterization of the binding of cAMP and cGMP to the CRP* 598 mutant of the Escherichia coli cAMP receptor protein. Nucleic Acids Research, 18, 5127–5132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodius, V. A., & Busby, S. J. (2000a). Transcription activation by the Escherichia coli cyclic AMP receptor protein: Determinants within activating region 3. Journal Molecular Biology, 299, 295–310.

    Article  CAS  Google Scholar 

  • Rhodius, V. A., & Busby, S. J. (2000b). Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma (70) subunit: Application of suppression genetics. Journal Molecular Biology, 299, 311–324.

    Article  CAS  Google Scholar 

  • Ryu, S., Kim, J., Adhya, S., & Garges, S. (1993). Pivotal role of amino acid at position 138 in the allosteric hinge reorientation of cAMP receptor protein. Proceedings of the National Academy of Sciences of the United States of America, 90, 75–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, M. H., Youn, H., Kang, I. H., & Gomelsky, M. (2015). Identification of bacterial guanylate cyclases. Proteins, 83, 799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, S. C., Shields, G. C., & Steitz, T. A. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90°. Science, 253, 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  • Scott, S. P., & Jarjous, S. (2005). Proposed structural mechanism of Escherichia coli cAMP receptor protein cAMP-dependent proteolytic cleavage protection and selective and nonselective DNA binding. Biochemistry, 44, 8730–8748.

    Article  CAS  PubMed  Google Scholar 

  • Sekowska, A., Wendel, S., Fischer, E. C., Nørholm, M. H. H., & Danchin, A. (2016). Generation of mutation hotspots in ageing bacterial colonies. Scientific Reports, 6, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seok, S. H., Im, H., Won, H. S., Seo, M. D., Lee, Y. S., Yoon, H. J., Cha, M. J., Park, J. Y., & Lee, B. J. (2014). Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. Acta Crystallographica Section D, 70, 1726–1742.

    Article  CAS  Google Scholar 

  • Serate, J., Roberts, G. P., Berg, O., & Youn, H. (2011). Ligand responses of Vfr, the virulence factor regulator from Pseudomonas aeruginosa. Journal of Bacteriology, 193, 4859–4868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, H., Yu, S., Kong, J., Wang, J., & Steitz, T. A. (2009). Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 106, 16604–16609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada, T., Fujita, N., Yamamoto, K., & Ishihama, A. (2011). Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS ONE, 6, e20081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, M., Blazy, B., & Baudras, A. (1980). An equilibrium study of the cooperative binding of adenosine cyclic 3’,5’-monophosphate and guanosine cyclic 3’,5’-monophosphate to the adenosine cyclic 3’,5’-monophosphate receptor protein from Escherichia coli. Biochemistry, 19, 5124–5130.

    Article  CAS  PubMed  Google Scholar 

  • Takebe, Y., Shibuya, M., & Kaziro, Y. (1978). A new extragenic suppressor of cya mutation. Mutant cyclic AMP receptor protein with an increased affinity for cyclic AMP. The Journal of Biochemistry, 83, 1615–1623.

    Article  CAS  PubMed  Google Scholar 

  • Tzeng, S. R., & Kalodimos, C. G. (2009). Dynamic activation of an allosteric regulatory protein. Nature, 462, 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Tzeng, S. R., & Kalodimos, C. G. (2012). Protein activity regulation by conformational entropy. Nature, 488, 236–240.

    Article  CAS  PubMed  Google Scholar 

  • Tzeng, S. R., & Kalodimos, C. G. (2013). Allosteric inhibition through suppression of transient conformational states. Nature Chemical Biology, 9, 462–465.

    Article  CAS  PubMed  Google Scholar 

  • Vaney, M. C., Gilliland, G. L., Harman, J. G., Peterkofsky, A., & Weber, I. T. (1989). Crystal structure of a cAMP-independent form of catabolite gene activator protein with adenosine substituted in one of two cAMP-binding sites. Biochemistry, 28, 4568–4574.

    Article  CAS  PubMed  Google Scholar 

  • Weber, I. T., & Steitz, T. A. (1987). Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. Journal Molecular Biology, 198, 311–326.

    Article  CAS  Google Scholar 

  • Yathindra, N., & Sunderalingam, M. (1974). Conformations of cyclic 3’, 5’-nucleotides. Effect of the base on the syn-anti conformer distribution. Biochemical and Biophysical Research Communications, 56, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Youn, H., Kerby, R. L., Conrad, M., & Roberts, G. P. (2006). Study of highly constitutively active mutants suggests how cAMP activates cAMP receptor protein. The Journal of Biological Chemistry, 281, 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  • Youn, H., Kerby, R. L., Koh, J., & Roberts, G. P. (2007). A C-helix residue, Arg-123, has important roles in both the active and inactive forms of the cAMP receptor protein. The Journal of Biological Chemistry, 282, 3632–3639.

    Article  CAS  PubMed  Google Scholar 

  • Youn, H., Koh, J., & Roberts, G. P. (2008). Two-state allosteric modeling suggests protein equilibrium as an integral component for cyclic AMP (cAMP) specificity in the cAMP receptor protein of Escherichia coli. Journal of Bacteriology, 190, 4532–4540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. P., & Ebright, R. H. (1990). Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex. Proceedings of the National Academy of Sciences of the United States of America, 87, 4717–4721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant R15AI101919 from the NIAID (to H. Y.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan Youn.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youn, H., Carranza, M. cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor. J Microbiol. 61, 277–287 (2023). https://doi.org/10.1007/s12275-023-00028-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00028-6

Keywords

Navigation