Skip to main content
Log in

Gut microbiota metabolic characteristics in coronary artery disease patients with hyperhomocysteine

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Hyperhomocysteine (HHcy) is known as a risk factor for coronary artery disease (CAD). Despite the knowledge that gut microbiota related metabolism pathway shares metabolites with that of Hcy, little has been shown concerning the association between HHcy and gut microbiota. To explore their relationship in the context of CAD, 105 patients and 14 healthy controls were recruited from one single medical center located in Beijing, China. Their serum and fecal samples were collected, with multi-omics analyses performed via LC/MS/MS and 16S rRNA gene V3-V4 region sequencing, respectively. Participants from the prospective cohort were divided into CAD, CAD & HHcy and healthy controls (HC) groups based on the diagnosis and serum Hcy concentration. The results revealed significant different metabolic signatures between CAD and CAD & HHcy groups. CAD patients with HHcy suffered a heavier atherosclerotic burden compared to CAD patients, and the difference was closely associated to betaine-homocysteine S-methyltransferase (BHMT)-related metabolites and trimethylamine N-oxide (TMAO)-related metabolites. Dimethylglycine (DMG) exhibited a strong positive correlation with serum total Hcy (tHcy), and TMAO and trimethylysine (TML) were associated with heavier atherosclerotic burden. Multiple other metabolites were also identified to be related to distinct cardiovascular risk factors. Additionally, Clostridium cluster IV and Butyricimonas were enriched in CAD patients with elevated tHcy. Our study suggested that CAD patients with elevated tHcy were correlated with higher atherosclerotic burden, and the impaired Hcy metabolism and cardiovascular risk were closely associated with BHMT-related metabolites, TMAO-related metabolites and impaired gut microbiota homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernyavskiy, I., Veeranki, S., Sen, U., and Tyagi, S.C. 2016. Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann. N. Y. Acad. Sci. 1363, 138–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, C.E., Aardema, N.D.J., Bunnell, M.L., Larson, D.P., Aguilar, S.S., Bergeson, J.R., Malysheva, O.V., Caudill, M.A., and Lefevre, M. 2020. Effect of choline forms and gut microbiota composition on trimethylamine-N-oxide response in healthy men. Nutrients 12, 2220.

    Article  CAS  PubMed Central  Google Scholar 

  • Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.

    Article  CAS  PubMed  Google Scholar 

  • Faeh, D., Chiolero, A., and Paccaud, F. 2006. Homocysteine as a risk factor for cardiovascular disease: should we (still) worry about? Swiss Med. Wkly. 136, 745–756.

    CAS  PubMed  Google Scholar 

  • Fang, K., Chen, Z., Liu, M., Peng, J., and Wu, P. 2015. Apoptosis and calcification of vascular endothelial cell under hyperhomocysteinemia. Med. Oncol. 32, 403.

    Article  PubMed  CAS  Google Scholar 

  • Ganguly, P. and Alam, S.F. 2015. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 14, 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • GBD 2019 Diseases and Injuries Collaborators. 2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222.

    Article  Google Scholar 

  • Godon, J.J., Zumstein, E., Dabert, P., Habouzit, F., and Moletta, R. 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63, 2802–2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanitsoraphan, C., Rattanawong, P., Charoensri, S., and Senthong, V. 2018. Trimethylamine N-oxide and risk of cardiovascular disease and mortality. Curr. Nutr. Rep. 7, 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Kaysen, G.A., Johansen, K.L., Chertow, G.M., Dalrymple, L.S., Kornak, J., Grimes, B., Dwyer, T., Chassy, A.W., and Fiehn, O. 2015. Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J. Ren. Nutr. 25, 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeth, R.A., Levison, B.S., Culley, M.K., Buffa, J.A., Wang, Z., Gregory, J.C., Org, E., Wu, Y., Li, L., Smith, J.D., et al. 2014. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 20, 799–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et al. 2013. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krautkramer, K.A., Fan, J., and Bäckhed, F. 2020. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19, 77–94.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.S., Obeid, S., Wang, Z., Hazen, B.J., Li, L., Wu, Y., Hurd, A.G., Gu, X., Pratt, A., Levison, B.S., et al. 2019. Trimethyllysine, a trimethylamine N-oxide precursor, provides near- and long-term prognostic value in patients presenting with acute coronary syndromes. Eur. Heart J. 40, 2700–2709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, X., Liu, B., Qu, H., Zhang, L., Lu, Y., Xu, Y., Lyu, Z., and Zheng, H. 2019. A high level of circulating valine is a biomarker for type 2 diabetes and associated with the hypoglycemic effect of sitagliptin. Mediat. Inflamm. 2019, 8247019.

    Article  CAS  Google Scholar 

  • Liu, H., Chen, X., Hu, X., Niu, H., Tian, R., Wang, H., Pang, H., Jiang, L., Qiu, B., Chen, X., et al. 2019. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loscalzo, J. and Handy, D.E. 2014. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulm. Circ. 4, 169–174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller, D.M., Allenspach, M., Othman, A., Saely, C.H., Muendlein, A., Vonbank, A., Drexel, H., and von Eckardstein, A. 2015. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243, 638–644.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, J., Masaki, T., Arakawa, M., Seike, M., and Yoshimatsu, H. 2010. Isoleucine prevents the accumulation of tissue triglycerides and upregulates the expression of PPARα and uncoupling protein in diet-induced obese mice. J. Nutr. 140, 496–500.

    Article  CAS  PubMed  Google Scholar 

  • Obeid, R., Awwad, H.M., Kirsch, S.H., Waldura, C., Herrmann, W., Graeber, S., and Geisel, J. 2017. Plasma trimethylamine-N-oxide following supplementation with vitamin D or D plus B vitamins. Mol. Nutr. Food Res. 61, 1600358.

    Article  CAS  Google Scholar 

  • Rajaie, S. and Esmaillzadeh, A. 2011. Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence. ARYA Atheroscler. 7, 78–86.

    PubMed  PubMed Central  Google Scholar 

  • Refsum, H., Smith, A.D., Ueland, P.M., Nexo, E., Clarke, R., Mc-Partlin, J., Johnston, C., Engbaek, F., Schneede, J., McPartlin, C., et al. 2004. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin. Chem. 50, 3–32.

    Article  CAS  PubMed  Google Scholar 

  • Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Schiattarella, G.G., Sannino, A., Toscano, E., Giugliano, G., Gargiulo, G., Franzone, A., Trimarco, B., Esposito, G., and Perrino, C. 2017. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur. Heart J. 38, 2948–2956.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy, V., Mehendale, V., Prabhu, K., Shetty, R., and Rao, P. 2014. Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian J. Clin. Biochem. 29, 339–344.

    Article  CAS  PubMed  Google Scholar 

  • Skagen, K., TrøSeid, M., Ueland, T., Holm, S., Abbas, A., Gregersen, I., Kummen, M., Bjerkeli, V., Reier-Nilsen, F., Russell, D., et al. 2016. The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis 247, 64–69.

    Article  CAS  PubMed  Google Scholar 

  • Szegedi, S.S., Castro, C.C., Koutmos, M., and Garrow, T.A. 2008. Betaine-homocysteine S-methyltransferase-2 is an S-methylmethionine-homocysteine methyltransferase. J. Biol. Chem. 283, 8939–8945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W.H., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., Wu, Y., and Hazen, S.L. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobias, D.K., Lawler, P.R., Harada, P.H., Demler, O.V., Ridker, P.M., Manson, J.E., Cheng, S., and Mora, S. 2018. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ. Genom. Precis. Med. 11, e002157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinjé, S., Stroes, E., Nieuwdorp, M., and Hazen, S.L. 2014. The gut microbiome as novel cardio-metabolic target: the time has come! Eur. Heart J. 35, 883–887.

    Article  PubMed  Google Scholar 

  • Wald, D.S., Law, M., and Morris, J.K. 2002. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325, 1202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.M., et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Roberts, A.B., Buffa, J.A., Levison, B.S., Zhu, W., Org, E., Gu, X., Huang, Y., Zamanian-Daryoush, M., Culley, M.K., et al. 2015. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X.J., Tian, D.C., Wang, F.W., Zhang, M.H., Fan, C.D., Chen, W., Wang, M.H., Fu, X.Y., and Ma, J.K. 2019. Astaxanthin inhibits homocysteine-induced endothelial cell dysfunction via the regulation of the reactive oxygen species-dependent VEGF-VEGFR2-FAK signaling pathway. Mol. Med. Rep. 19, 4753–4760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcken, D.E. and Wilcken, B. 1976. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J. Clin. Invest. 57, 1079–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, W.K., Chen, C.C., Liu, P.Y., Panyod, S., Liao, B.Y., Chen, P.C., Kao, H.L., Kuo, H.C., Kuo, C.H., Chiu, T.H.T., et al. 2019. Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut 68, 1439–1449.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Fan, S., Zhi, X., Wang, Y., Wang, Y., Zheng, Q., and Sun, G. 2014. Prevalence of hyperhomocysteinemia in China: a systematic review and meta-analysis. Nutrients 7, 74–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, S., Li, X., Yang, F., Zhao, R., Pan, X., Liang, J., Tian, L., Li, X., Liu, L., Xing, Y., et al. 2019. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front. Pharmacol. 10, 1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, R.Y., Wang, S.M., Sun, L., Liu, J.M., Li, H.X., Sui, X.F., Wang, M., Xiu, H.L., Wang, S., He, Q., et al. 2015. Association of branched-chain amino acids with coronary artery disease: A matched-pair case-control study. Nutr. Metab. Cardiovasc. Dis. 25, 937–942.

    Article  CAS  PubMed  Google Scholar 

  • Yap, S., Naughten, E.R., Wilcken, B., Wilcken, D.E., and Boers, G.H. 2000. Vascular complications of severe hyperhomocysteinemia in patients with homocystinuria due to cystathionine β-synthase deficiency: effects of homocysteine-lowering therapy. Semin. Thromb. Hemost. 26, 335–340.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Wu, Y., Wang, J., Wu, G., Long, W., Xue, Z., Wang, L., Zhang, X., Pang, X., Zhao, Y., et al. 2016. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Sci. Rep. 6, 27572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, C., Zhang, M., Wang, S., Han, R., Cao, Y., Hua, W., Mao, Y., Zhang, X., Pang, X., Wei, C., et al. 2010. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 4, 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y. and Wang, Z. 2020. Impact of trimethylamine N-oxide (TMAO) metaorganismal pathway on cardiovascular disease. J. Lab Precis. Med. 5, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, M., Zhao, L., Xiong, X., He, Y., Huang, W., Liu, Z., Ji, L., Pan, B., Guo, X., Wang, L., et al. 2020. TMAVA, a metabolite of intestinal microbes, is increased in plasma from patients with liver steatosis, inhibits γ-butyrobetaine hydroxylase, and exacerbates fatty liver in mice. Gastroenterology 158, 2266–2281.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Natural Science Foundation (grant no. L202046), the National Natural Science Foundation (grant no. 82170486) and the fellowship of China Postdoctoral Science Foundation (2021TQ0050).

Author information

Authors and Affiliations

Authors

Contributions

R. Tian and SY. Zhang designed and coordinated the study. HH. Liu, SQ. Feng, YF. Wang and YY. Wang were in charge of patient recruitment, sample collection. HH. Liu and SQ. Feng carried out the bioinformatic analyses of metagenomic and metabolomics data. YF. Wang completed the figure drawing and editing. YX. Chen, YY. Wang and H. Wang helped the supplementary experiment and technical assistance. R. Tian and HH. Liu wrote the manuscript. SY. Zhang revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shu-Yang Zhang.

Ethics declarations

The study was approved by local ethics committee of Peking Union Medical College Hospital (JS-1195) and informed consent was obtained from all study participants.

Additional information

Conflict of Interest

The authors declare no competing interests.

Availability of Data and Materials

The data set supporting the results of this article has been deposited in the Sequence Read Archive (SRP) under BioProject accession code SRP167862.

Consent for Publication

Not applicable.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, R., Liu, HH., Feng, SQ. et al. Gut microbiota metabolic characteristics in coronary artery disease patients with hyperhomocysteine. J Microbiol. 60, 419–428 (2022). https://doi.org/10.1007/s12275-022-1451-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1451-2

Keywords

Navigation