Skip to main content
Log in

Transposon insertion site sequencing (TIS) of Pseudomonas aeruginosa

  • Protocol
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Transposon insertion site sequencing (TIS) is a technique that determines the insertion profile of a transposon mutant library by massive parallel sequencing of transposon-genomic DNA junctions. Because the transposon insertion profile reflects the abundance of each mutant in the library, it provides information to assess the fitness contribution of each genetic locus of a bacterial genome in a specific growth condition or strain background. Although introduced only about a dozen years ago, TIS has become an important tool in bacterial genetics that provides clues to study biological functions and regulatory mechanisms. Here, I describe a protocol for generating high density transposon insertion mutant libraries and preparing Illumina sequencing samples for mapping the transposon junctions of the transposon mutant libraries using Pseudomonas aeruginosa as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badarinarayana, V., Estep, P.W.3rd, Shendure, J., Edwards, J., Tavazoie, S., Lam, F., and Church, G.M. 2001. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19, 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt, T.G. and de Boer, P.A.J. 2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley, D.E., Taylor, D.E., and Cohen, D.R. 1980. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J. Bacteriol. 143, 1466–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carver, T., Harris, S.R., Berriman, M., Parkhill, J., and McQuillan, J.A. 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469.

    Article  CAS  PubMed  Google Scholar 

  • Chao, M.C., Abel, S., Davis, B.M., and Waldor, M.K. 2016. The design and analysis of transposon insertion sequencing experiments. Nat. Rev. Microbiol. 14, 119–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do, T., Schaefer, K., Santiago, A.G., Coe, K.A., Fernandes, P.B., Kahne, D., Pinho, M.G., and Walker, S. 2020. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat. Microbiol. 5, 291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dörr, T., Alvarez, L., Delgado, F., Davis, B.M., Cava, F., and Waldor, M.K. 2016. A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance. Proc. Natl. Acad. Sci. USA 113, 404–409.

    Article  PubMed  Google Scholar 

  • Dörr, T., Möll, A., Chao, M.C., Cava, F., Lam, H., Davis, B.M., and Waldor, M.K. 2014. Differential requirement for PBP1a and PBP1b in in vivo and in vitro fitness of Vibrio cholerae. Infect. Immun. 82, 2115–2124.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenton, A.K., El Mortaji, L., Lau, D.T.C., Rudner, D.Z., and Bernhardt, T.G. 2016. CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nat. Microbiol. 2, 16237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenton, A.K., Manuse, S., Flores-Kim, J., Garcia, P.S., Mercy, C., Grangeasse, C., Bernhardt, T.G., and Rudner, D.Z. 2018. Phosphorylation-dependent activation of the cell wall synthase PBP2a in Streptococcus pneumoniae by MacP. Proc. Natl. Acad. Sci. USA 115, 2812–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Kim, J., Dobihal, G.S., Fenton, A., Runder, D.Z., and Bernhardt, T.G. 2019. A switch in surface polymer biogenesis triggers growth-phase-dependent and antibiotic-induced bacteriolysis. eLife 8, e44912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawronski, J.D., Wong, S.M.S., Giannoukos, G., Ward, D.V., and Akerley, B.J. 2009. Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc. Natl. Acad. Sci. USA 106, 16422–16427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisinger, E., Mortman, N.J., Dai, Y., Cokol, M., Syal, S., Farinha, A., Fisher, D.G., Tang, A.Y., Lazinski, D.W., Wood, S., et al. 2020. Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope. Nat. Commun. 11, 4522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7, 745–754.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, A.L., McNulty, N.P., Zhao, Y., Leip, D., Mitra, R.D., Lozupone, C.A., Knight, R., and Gordon, J.I. 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene, N.G., Fumeaux, C., and Bernhardt, T.G. 2018. Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 115, 3150–3155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensel, M., Shea, J.E., Gleeson, C., Jones, M.D., Dalton, E., and Holden, D.W. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Hillenmeyer, M.E., Fung, E., Wildenhain, J., Pierce, S.E., Hoon, S., Lee, W., Proctor, M., St. Onge, R.P., Tyers, M., Koller, D., et al. 2008. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo, B.M., Kritikos, G., Farelli, J.D., Todor, H., Tong, K., Kimsey, H., Wapinski, I., Galardini, M., Cabal, A., Peters, J.M., et al. 2017. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst. 4, 291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampe, D.J., Akerley, B.J., Rubin, E.J., Mekalanos, J.J., and Robertson, H.M. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. USA 96, 11428–11433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langridge, G.C., Phan, M.D., Turner, D.J., Perkins, T.T., Parts, L., Haase, J., Charles, I., Maskell, D.J., Peters, S.E., Dougan, G., et al. 2009. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res. 19, 2308–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lederberg, J. and Lederberg, E.M. 1952. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63, 399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lütgens, M. and Gottschalk, G. 1980. Why a co-substrate is required for anaerobic growth of Escherichia coli on citrate. Microbiology 119, 63–70.

    Article  Google Scholar 

  • Nichols, R.J., Sen, S., Choo, Y.J., Beltrao, P., Zietek, M., Chaba, R., Lee, S., Kazmierczak, K.M., Lee, K.J., Wong, A., et al. 2011. Phenotypic landscape of a bacterial cell. Cell 144, 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Paradis-Bleau, C., Markovski, M., Uehara, T., Lupoli, T.J., Walker, S., Kahne, D.E., and Bernhardt, T.G. 2010. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price, M.N., Wetmore, K.M., Waters, R.J., Callaghan, M., Ray, J., Liu, H., Kuehl, J.V., Melnyk, R.A., Lamson, J.S., Suh, Y., et al. 2018. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 557, 503–509.

    Article  CAS  PubMed  Google Scholar 

  • Reznikoff, W.S. 2008. Transposon Tn5. Annu. Rev. Genet. 42, 269–286.

    Article  CAS  PubMed  Google Scholar 

  • Rubin, E.J., Akerley, B.J., Novik, V.N., Lampe, D.J., Husson, R.N., and Mekalanos, J.J. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96, 1645–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salama, N.R., Shepherd, B., and Falkow, S. 2004. Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J. Bacteriol. 186, 7926–7935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santa Maria, J.P., Sadaka, A., Moussa, S.H., Brown, S., Zhang, Y.J., Rubin, E.J., Gilmore, M.S., and Walker, S. 2014. Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl. Acad. Sci. USA 111, 12510–12515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassetti, C.M., Boyd, D.H., and Rubin, E.J. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98, 12712–12717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sher, J.W., Lim, H.C., and Bernhardt, T.G. 2020. Global phenotypic profiling identifies a conserved actinobacterial cofactor for a bifunctional PBP-type cell wall synthase. eLife 9, e54761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D.L. Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, M., et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327.

    Article  PubMed  Google Scholar 

  • Truong, T.T., Vettiger, A., and Bernhardt, T.G. 2020. Cell division is antagonized by the activity of peptidoglycan endopeptidases that promote cell elongation. Mol. Microbiol. 114, 966–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Typas, A., Nichols, R.J., Siegele, D.A., Shales, M., Collins, S.R., Lim, B., Braberg, H., Yamamoto, N., Takeuchi, R., Wanner, B.L., et al. 2008. High-throughput, quantitative analyses of genetic interactions in E. coli. Nat. Methods 5, 781–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Opijnen, T., Bodi, K.L., and Camilli, A. 2009. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods 6, 767–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Opijnen, T. and Camilli, A. 2012. A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res. 22, 2541–2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Opijnen, T., Lazinski, D.W., and Camilli, A. 2015. Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr. Protoc. Microbiol. 36, 1E.3.1–1E.3.24.

    Google Scholar 

  • Warr, A.R., Hubbard, T.P., Munera, D., Blondel, C.J., zur Wiesch, P.A., Abel, S., Wang, X., Davis, B.M., and Waldor, M.K. 2019. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog. 15, e1007652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetmore, K.M., Price, M.N., Waters, R.J., Lamson, J.S., He, J., Hoover, C.A., Blow, M.J., Bristow, J., Butland, G., Arkin, A.P., et al. 2015. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. mBio 6, e00306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant (NRF- 2019R1A2C1002648)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbaek Cho.

Ethics declarations

The authors have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H. Transposon insertion site sequencing (TIS) of Pseudomonas aeruginosa. J Microbiol. 59, 1067–1074 (2021). https://doi.org/10.1007/s12275-021-1565-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1565-y

Keywords

Navigation