Skip to main content
Log in

The putative polysaccharide synthase AfCps1 regulates Aspergillus fumigatus morphogenesis and conidia immune response in mouse bone marrow-derived macrophages

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Aspergillus fumigatus is a well-known opportunistic pathogen that causes invasive aspergillosis (IA) infections with high mortality in immunosuppressed individuals. Morphogenesis, including hyphal growth, conidiation, and cell wall biosynthesis is crucial in A. fumigatus pathogenesis. Based on a previous random insertional mutagenesis library, we identified the putative polysaccharide synthase gene Afcps1 and its para-log Afcps2. Homologs of the cps gene are commonly found in the genomes of most fungal and some bacterial pathogens. Afcps1/cpsA is important in sporulation, cell wall composition, and virulence. However, the precise regulation patterns of cell wall integrity by Afcps1/cpsA and further effects on the immune response are poorly understood. Specifically, our in-depth study revealed that Afcps1 affects cell-wall stability, showing an increased resistance of ΔAfcps1 to the chitinmicrofibril destabilizing compound calcofluor white (CFW) and susceptibility of ΔAfcps1 to the β-(1,3)-glucan synthase inhibitor echinocandin caspofungin (CS). Additionally, deletion of Afcps2 had a normal sporulation phenotype but caused hypersensitivity to Na+ stress, CFW, and Congo red (CR). Specifically, quantitative analysis of cell wall composition using high-performance anion exchange chromatography-pulsed amperometric detector (HPAEC-PAD) analysis revealed that depletion of Afcps1 reduced cell wall glucan and chitin contents, which was consistent with the down-regulation of expression of the corresponding biosynthesis genes. Moreover, an elevated immune response stimulated by conidia of the ΔAfcps1 mutant in marrow-derived macrophages (BMMs) during phagocytosis was observed. Thus, our study provided new insights into the function of polysaccharide synthase Cps1, which is necessary for the maintenance of cell wall stability and the adaptation of conidia to the immune response of macrophages in A. fumigatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akoumianaki, T., Kyrmizi, I., Valsecchi, I., Gresnigt, M.S., Samonis, G., Drakos, E., Boumpas, D., Muszkieta, L., Prevost, M.C., Kontoyiannis, D.P., et al. 2016. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Beauvais, A., Maubon, D., Park, S., Morelle, W., Tanguy, M., Huerre, M., Perlin, D.S., and Latgé, J.P. 2005. Two a(1–3) glucan synthases with different functions in Aspergillus fumigatus. Appl. Environ. Microbiol. 71, 1531–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleichrodt, R.J., Foster, P., Howell, G., Latgé, J.P., and Read, N.D. 2020. Cell wall composition heterogeneity between single cells in Aspergillus fumigatus leads to heterogeneous behavior during antifungal treatment and phagocytosis. mBio 11, e03015–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caffrey, A.K., Lehmann, M.M., Zickovich, J.M., Espinosa, V., Shepardson, K.M., Watschke, C.P., Hilmer, K.M., Thammahong, A., Barker, B.M., Rivera, A., et al. 2015. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 11, e1004625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cartee, R.T., Forsee, W.T., Schutzbach, J.S., and Yother, J. 2000. Mechanism of type 3 capsular polysaccharide synthesis in Streptococcus pneumoniae. J. Biol. Chem. 275, 3907–3914.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y.C., Jong, A., Huang, S., Zerfas, P., and Kwon-Chung, K.J. 2006. CPS1, a homolog of the Streptococcus pneumoniae type 3 polysaccharide synthase gene, is important for the pathobiology of Cryptococcus neoformans. Infect. Immun. 74, 3930–3938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combier, J.P., Melayah, D., Raffier, C., Gay, G., and Marmeisse, R. 2003. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol. Lett. 220, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Cortés, J.C.G., Curto, M.Á., Carvalho, V.S.D., Pérez, P., and Ribas, J.C. 2019. The fungal cell wall as a target for the development of new antifungal therapies. Biotechnol. Adv. 37, 107352.

    Article  PubMed  CAS  Google Scholar 

  • Dagenais, T.R. and Keller, N.P. 2009. Pathogenesis of Aspergillus fumigatus in invasive Aspergillosis. Clin. Microbiol. Rev. 22, 447–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dichtl, K., Samantaray, S., Aimanianda, V., Zhu, Z., Prévost, M.C., Latgé, J.P., Ebel, F., and Wagener, J. 2015. Aspergillus fumigatus devoid of cell wall β-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors. Mol. Microbiol. 95, 458–471.

    Article  CAS  PubMed  Google Scholar 

  • Dillard, J.P., Vandersea, M.W., and Yother, J. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181, 973–983.

    Article  CAS  PubMed  Google Scholar 

  • Erjavec, Z., Kluin-Nelemans, H., and Verweij, P.E. 2009. Trends in invasive fungal infections, with emphasis on invasive aspergillosis. Clin. Microbiol. Infect. 15, 625–633.

    Article  CAS  PubMed  Google Scholar 

  • Fang, W., Sanz, A.B., Bartual, S.G., Wang, B., Ferenbach, A.T., ParkaŠ, V., Hurtado-Guerrero, R., Arroyo, J., and van Aalten, D.M.F. 2019. Mechanisms of redundancy and specificity of the Aspergillus fumigatus Crh transglycosylases. Nat. Commun. 10, 1669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng, X.H., Ramamoorthy, V., Pandit, S.S., Prieto, A., Espeso, E.A., and Calvo, A.M. 2017. cpsA regulates mycotoxin production, morphogenesis and cell wall biosynthesis in the fungus Aspergillus nidulans. Mol. Microbiol. 105, 1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine, T., Beauvais, A., Loussert, C., Thevenard, B., Fulgsang, C.C., Ohno, N., Clavaud, C., Prevost, M.C., and Latgé, J.P. 2010. Cell wall α1–3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet. Biol. 47, 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Fontaine, T., Simenel, C., Dubreucq, G., Adam, O., Delepierre, M., Lemoine, J., Vorgias, C.E., Diaquin, M., and Latgé, J.P. 2000. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Biol. Chem. 275, 27594–27607.

    Article  CAS  PubMed  Google Scholar 

  • Fortwendel, J.R., Juvvadi, P.R., Perfect, B.Z., Rogg, L.E., Perfect, J.R., and Steinbach, W.J. 2010. Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob. Agents Chemother. 54, 1555–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortwendel, J.R., Juvvadi, P.R., Pinchai, N., Perfect, B.Z., Alspaugh, J.A., Perfect, J.R., and Steinbach, W.J. 2009. Differential effects of inhibiting chitin and 1,3-β-D-glucan synthesis in Ras and calcineurin mutants of Aspergillus fumigatus. Antimicrob. Agents Chemother. 53, 476–482.

    Article  CAS  PubMed  Google Scholar 

  • Fu, C., Sokolow, E., Rupert, C.B., and Free, S.J. 2014. The Neurospora crassa CPS-1 polysaccharide synthase functions in cell wall biosynthesis. Fungal Genet. Biol. 69, 23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastebois, A., Clavaud, C., Aimanianda, V., and Latgé, J.P. 2009. Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol. 4, 583–595.

    Article  CAS  PubMed  Google Scholar 

  • Geißel, B., Loiko, V., Klugherz, I., Zhu, Z., Wagener, N., Kurzai, O., van den Hondel, C.A., and Wagener, J. 2018. Azole-induced cell wall carbohydrate patches kill Aspergillus fumigatus. Nat. Commun. 9, 3098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghasemi, H., Ghazanfari, T., Yaraee, R., Owlia, P., Hassan, Z.M., and Faghihzadeh, S. 2012. Roles of IL-10 in ocular inflammations: a review. Ocul. Immunol. Inflamm. 20, 406–418.

    Article  CAS  PubMed  Google Scholar 

  • Gravelat, F.N., Beauvais, A., Liu, H., Lee, M.J., Snarr, B.D., Chen, D., Xu, W., Kravtsov, I., Hoareau, C.M., Vanier, G., et al. 2013. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 9, e1003575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasim, S. and Coleman, J.J. 2019. Targeting the fungal cell wall: current therapies and implications for development of alternative antifungal agents. Future Med. Chem. 11, 869–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry, C., Latgé, J.P., and Beauvais, A. 2012. α1,3 glucans are dispensable in Aspergillus fumigatus. Eukaryot. Cell 11, 26–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohl, T.M., Feldmesser, M., Perlin, D.S., and Pamer, E.G. 2008. Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal β-glucan exposure. J. Infect. Dis. 198, 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Hopke, A., Brown, A.J.P., Hall, R.A., and Wheeler, R.T. 2018. Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol. 26, 284–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim-Granet, O., Philippe, B., Boleti, H., Boisvieux-Ulrich, E., Grenet, D., Stern, M., and Latgé, J.P. 2003. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect. Immun. 71, 891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jong, A., Wu, C.H., Chen, H.M., Luo, F., Kwon-Chung, K.J., Chang, Y.C., LaMunyon, C.W., Plaas, A., and Huang, S.H. 2007. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eukaryot. Cell 6, 1486–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kędzierska, A., Kochan, P., Pietrzyk, A., and Kedzierska, J. 2007. Current status of fungal cell wall components in the immunodiagnostics of invasive fungal infections in humans: galactomannan, mannan and (1→3)-β-D-glucan antigens. Eur. J. Clin. Microbiol. Infect. Dis. 26, 755–766.

    Article  PubMed  CAS  Google Scholar 

  • Kopecká, M. and Gabriel, M. 1992. The influence of Congo red on the cell wall and (1→3)-β-D-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch. Microbiol. 158, 115–126.

    Article  PubMed  Google Scholar 

  • Kyrmizi, I., Gresnigt, M.S., Akoumianaki, T., Samonis, G., Sidiropoulos, P., Boumpas, D., Netea, M.G., van de Veerdonk, F.L., Kontoyiannis, D.P., and Chamilos, G. 2013. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J. Immunol. 191, 1287–1299.

    Article  CAS  PubMed  Google Scholar 

  • Latgé, J.P. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Latgé, J.P. 2010. Tasting the fungal cell wall. Cell. Microbiol. 12, 863–872.

    Article  PubMed  Google Scholar 

  • Latgé, J.P., Beauvais, A., and Chamilos, G. 2017. The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu. Rev. Microbiol. 71, 99–116.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.J. and Sheppard, D.C. 2016. Recent advances in the understanding of the Aspergillus fumigatus cell wall. J. Microbiol. 54, 232–242.

    Article  CAS  PubMed  Google Scholar 

  • Long, N., Zeng, L., Qiao, S., Li, L., and Zhong, G. 2018. Aspergillus fumigatus Afssn3-Afssn8 pair reverse regulates azole resistance by conferring extracellular polysaccharide, sphingolipid pathway intermediates, and efflux pumps to biofilm. Antimicrob. Agents Chmother. 62, e01978–17.

    Google Scholar 

  • Maubon, D., Park, S., Tanguy, M., Huerre, M., Schmitt, C., Prévost, M.C., Perlin, D.S., Latgé, J.P., and Beauvais, A. 2006. AGS3, an α(1–3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet. Biol. 43, 366–375.

    Article  CAS  PubMed  Google Scholar 

  • Mellado, E., Dubreucq, G., Mol, P., Sarfati, J., Paris, S., Diaquin, M., Holden, D.W., Rodriguez-Tudela, J.L., and Latgé, J.P. 2003. Cell wall biogenesis in a double chitin synthase mutant (chsG/chsE) of Aspergillus fumigatus. Fungal Genet. Biol. 38, 98–109.

    Article  CAS  PubMed  Google Scholar 

  • Mennink-Kersten, M.A., Donnelly, J.P., and Verweij, P.E. 2004. Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. Lancet Infect. Dis. 4, 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Mouyna, I., Hartland, R.P., Fontaine, T., Diaquin, M., Simenel, C., Delepierre, M., Henrissat, B., and Latgé, J.P. 1998. A 1,3-β-glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus is a homologue of the yeast Bgl2p. Microbiology 144, 3171–3180.

    CAS  Google Scholar 

  • Nepal, B., Myers, R., Lohmar, J.M., Puel, O., Thompson, B., Van Cura, M., and Calvo, A.M. 2019. Characterization of the putative polysaccharide synthase CpsA and its effects on the virulence of the human pathogen Aspergillus fumigatus. PLoS ONE 14, e0216092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, H.S., Yu, M.Y., Lee, M.K., Maeng, P.J., Kim, S.C., and Yu, J.H. 2015. Velvet-mediated repression of β-glucan synthesis in Aspergillus nidulans spores. Sci. Rep. 5, 10199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ram, A.F.J. and Klis, F.M. 2006. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red. Nat. Protoc. 1, 2253–2256.

    Article  CAS  PubMed  Google Scholar 

  • Romani, L. 2011. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288.

    Article  CAS  PubMed  Google Scholar 

  • Silva, R.L., Lopes, A.H., Guimarães, R.M., and Cunha, T.M. 2017. CXCL1/CXCR2 signaling in pathological pain: role in peripheral and central sensitization. Neurobiol. Dis. 105, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Sugui, J.A., Chang, Y.C., and Kwon-Chung, K.J. 2005. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl. Environ. Microbiol. 71, 1798–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, M.S., Drew, R.H., and Perfect, J.R. 2006. Emerging echinocandins for treatment of invasive fungal infections. Expert Opin. Emerg. Drugs 11, 231–250.

    Article  CAS  PubMed  Google Scholar 

  • Vessels, J.M. and Radding, J.A. 1993. Oligosaccharide mapping of fungal glucan synthase product by high-performance anion-exchange chromatography. Anal. Biochem. 215, 150–155.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimi, A., Sano, M., Inaba, A., Kokubun, Y., Fujioka, T., Mizutani, O., Hagiwara, D., Fujikawa, T., Nishimura, M., Yano, S., et al. 2013. Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: AgsB is the major α-1,3-glucan synthase in this fungus. PLoS ONE 8, e54893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Khan, N.M., Nunez, K.M., Chess, E.K., and Szabo, C.M. 2012. Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Anal. Chem. 84, 4104–4110.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Zhejiang (LY19C010001), the National Natural Science Foundation of China (NSFC) (31500055 and 31901668), Scientific Research Fund of Zhejiang Provincial Education Department (Y201940932), the Natural Science Foundation of Ningbo (2019A610436), and School Research Project in Ningbo University (XYL19011). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhendong Cai or Guowei Zhong.

Additional information

Conflict of Interest

The authors report no conflict of interest.

Financial Disclosure

The authors report no financial interest or benefit arising from the direct application of this work.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yuan, A., Zeng, L. et al. The putative polysaccharide synthase AfCps1 regulates Aspergillus fumigatus morphogenesis and conidia immune response in mouse bone marrow-derived macrophages. J Microbiol. 59, 64–75 (2021). https://doi.org/10.1007/s12275-021-0347-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0347-x

Keywords

Navigation