Skip to main content

Advertisement

Log in

Proteomic analysis reveals the temperature-dependent presence of extracytoplasmic peptidases in the biofilm exoproteome of Listeria monocytogenes EGD-e

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The foodborne pathogen Listeria monocytogenes resists environmental stresses by forming biofilms. Because this pathogen transmits between the environment and the host, it must adapt to temperature as an environmental stress. In this study, we aimed to identify which proteins were present depending on the temperature in the biofilms of L. monocytogenes EGD-e. Proteins in the supernatants of biofilms formed at 25°C and 37°C were compared using two-dimensional gel electrophoresis and liquid chromatography with tandem mass spectrometry. The larger number of extracytoplasmic proteins associated with cell wall/membrane/envelop biogenesis was identified from the supernatant of biofilms formed at 25°C (7) than those at 37°C (0). Among the 16 extracytoplasmic proteins detected only at 25°C, three were peptidases, namely Spl, Cwh, and Lmo0186. Moreover, mRNA expression of the three peptidases was higher at 25°C than at 37°C. Interestingly, this adaptation of gene expression to temperature was present in sessile cells but not in dispersed cells. After inhibiting the activity of extracytoplasmic peptidases with a protease inhibitor, we noted that the levels of biofilm biomass increased with higher concentrations of the protease inhibitor only when L. monocytogenes grew biofilms at 25°C and not at 37°C. Overall, our data suggest an effect of temperature on the presence of peptidases in L. monocytogenes biofilms. Additionally, increasing the levels of extracytoplasmic peptidases in biofilms is likely a unique feature for sessile L. monocytogenes that causes a naturally occurring breakdown of biofilms and facilitates the pathogen exiting biofilms and disseminating into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnisalo, K., Autio, T., Sjöberg, A.M., Lundén, J., Korkeala, H., and Suihko, M.L. 2003. Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis. J. Food Prot. 66, 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Alcorlo, M., Martínez-Caballero, S., Molina, R., and Hermoso, J.A. 2017. Carbohydrate recognition and lysis by bacterial peptidogycan hydrolases. Curr. Opin. Struct. Biol. 44, 87–100.

    Article  PubMed  CAS  Google Scholar 

  • Bécavin, C., Koutero, M., Tchitchek, N., Cerutti, F., Lechat, P., Maillet, N., Hoede, C., Chiapello, H., Gaspin, C., and Cossart, P. 2017. Listeriomics: an interactive web platform for systems biology of Listeria. mSystems 2, e00186–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beresford, M.R., Andrew, P.W., and Shama, G. 2001. Listeria monocytogenes adheres to many materials found in food-processing environments. J. Appl. Microbiol. 90, 1000–1005.

    Article  PubMed  CAS  Google Scholar 

  • Cabrita, P., Batista, S., Machado, H., Moes, S., Jenö, P., Manadas, B., Trigo, M.J., Monteiro, S., Ferreira, R.B., and Brito, L. 2013. Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures. Foodborne Pathog. Dis. 10, 428–434.

    Article  PubMed  CAS  Google Scholar 

  • Chan, Y.C. and Wiedmann, M. 2009. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures. Crit. Rev. Food Sci. Nutr. 49, 237–253.

    Article  PubMed  CAS  Google Scholar 

  • Chavant, P., Gaillard-Martinie, B., and Hébraud, M. 2004. Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth phase. FEMS Microbiol. Lett. 236, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski, P. and Sacchi, N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585.

    Article  PubMed  CAS  Google Scholar 

  • Chua, S.L., Liu, Y., Yam, J.K.H., Chen, Y., Vejborg, R.M., Tan, B.G.C., Kjelleberg, S., Tolker-Nielsen, T., Givskov, M., and Yang, L. 2014. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 5, 4462.

    Article  PubMed  CAS  Google Scholar 

  • Colagiorgi, A., Bruini, I., Di Ciccio, P.A., Zanardi, E., Ghidini, S., and Ianieri, A. 2017. Listeria monocytogenes biofilms in the wonderland of food Industry. Pathogens 6, 41.

    Article  PubMed Central  CAS  Google Scholar 

  • Combrouse, T., Sadovskaya, I., Faille, C., Kol, O., Guérardel, Y., and Midelet-Bourdin, G. 2013. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions. J. Appl. Microbiol. 114, 1120–1131.

    Article  PubMed  CAS  Google Scholar 

  • Desvaux, M., Dumas, E., Chafsey, I., Chambon, C., and Hébraud, M. 2010. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J. Proteome Res. 9, 5076–5092.

    Article  PubMed  CAS  Google Scholar 

  • Durack, J., Ross, T., and Bowman, J.P. 2013. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PloS One 8, e73603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • European Food Safety Authority, European Centre for Disease Prevention and Control. 2016. The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 14, e04634.

    Google Scholar 

  • Faurobert, M., Pelpoir, E., and Chaïb, J. 2007. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol. Biol. 355, 9–14.

    PubMed  CAS  Google Scholar 

  • Flemming, H.C. and Wingender, J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633.

    Article  PubMed  CAS  Google Scholar 

  • Franciosa, G., Maugliani, A., Scalfaro, C., Floridi, F., and Aureli, P. 2009. Expression of internalin A and biofilm formation among Listeria monocytogenes clinical isolates. Int. J. Immunopath. Pharmacol. 22, 183–193.

    Article  CAS  Google Scholar 

  • Frolund, B., Palmgren, R., Keiding, K., and Nielsen, P.H. 1996. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 30, 1749–1758.

    Article  Google Scholar 

  • Gilbreth, S.E., Call, J.E., Wallace, F.M., Scott, V.N., Chen, Y., and Luchansky, J.B. 2005. Relatedness of Listeria monocytogenes isolates recovered from selected ready-to-eat foods and listeriosis patients in the United States. Appl. Environ. Microbiol. 71, 8115–8122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hall-Stoodley, L. and Stoodley, P. 2002. Developmental regulation of microbial biofilms. Curr. Opin. Biotechnol. 13, 228–233.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M., and Cossart, P. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561.

    Article  PubMed  Google Scholar 

  • Kaspar, D., Auer, F., Schardt, J., Schindele, F., Ospina, A., Held, C., Ehrenreich, A., Scherer, S., and Müller-Herbst, S. 2014. Temperature- and nitrogen source-dependent regulation of GlnR target genes in Listeria monocytogenes. FEMS Microbiol. Lett. 355, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Klinkert, B., Cimdins, A., Gaubig, L.C., Rossmanith, J., Aschke-Sonnenborn, U., and Narberhaus, F. 2012. Thermogenetic tools to monitor temperature-dependent gene expression in bacteria. J. Biotechnol. 160, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Lam, O., Wheeler, J., and Tang, C.M. 2014. Thermal control of virulence factors in bacteria: a hot topic. Virulence 5, 852–862.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauderdale, K.J., Boles, B.R., Cheung, A.L., and Horswill, A.R. 2009. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect. Immun. 77, 1623–1635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, J.J., Lee, G., and Shin, J.H. 2014. σB affects biofilm formation under the dual stress conditions imposed by adding salt and low temperature in Listeria monocytogenes. J. Microbiol. 52, 849–855.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. and Wang, C. 2017. Morphological change and decreasing transfer rate of biofilm-featured Listeria monocytogenes EGDe. J. Food Prot. 80, 368–375.

    Article  PubMed  Google Scholar 

  • Lemon, K.P., Freitag, N.E., and Kolter, R. 2010. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. J. Bacteriol. 192, 3969–3976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loh, E., Dussurget, O., Gripenland, J., Vaitkevicius, K., Tiensuu, T., Mandin, P., Repoila, F., Buchrieser, C., Cossart, P., and Johansson, J. 2009. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139, 770–779.

    Article  PubMed  CAS  Google Scholar 

  • Longhi, C., Scoarughi, G.L., Poggiali, F., Cellini, A., Carpentieri, A., Seganti, L., Pucci, P., Amoresano, A., Cocconcelli, P.S., Artini, M., et al. 2008. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb. Pathog. 45, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Lourenço, A., de Las Heras, A., Scortti, M., Vazquez-Boland, J., Frank, J.F., and Brito, L. 2013. Comparison of Listeria monocytogenes exoproteomes from biofilm and planktonic state: Lmo2504, a protein associated with biofilms. Appl. Environ. Microbiol. 79, 6075–6082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lourenço, A., Rego, F., Brito, L., and Frank, J.F. 2012. Evaluation of methods to assess the biofilm-forming ability of Listeria monocytogenes. J. Food Prot. 75, 1411–1417.

    Article  PubMed  Google Scholar 

  • Luo, Q., Shang, J., Feng, X., Guo, X., Zhang, L., and Zhou, Q. 2013. PrfA led to reduced biofilm formation and contributed to altered gene expression patterns in biofilm-forming Listeria monocytogenes. Curr. Microbiol. 67, 372–378.

    Article  PubMed  CAS  Google Scholar 

  • Manios, S.G. and Skandamis, P.N. 2014. Control of Listeria monocytogenes in the processing environment by understanding biofilm formation and resistance to sanitizers. Methods Mol. Biol. 1157, 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Marlow, V.L., Cianfanelli, F.R., Porter, M., Cairns, L.S., Dale, J.K., and Stanley-Wall, N.R. 2014. The prevalence and origin of exoprotease-producing cells in the Bacillus subtilis biofilm. Microbiolgy 160, 56–66.

    Article  CAS  Google Scholar 

  • Martínez-Suárez, J.V., Ortiz, S., and López-Alonso, V. 2016. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front. Microbiol. 7, 638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marvasi, M., Chen, C., Carrazana, M., Durie, I.A., and Teplitski, M. 2014. Systematic analysis of the ability of Nitric Oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7. AMB Express 4, 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGann, P., Ivanek, R., Wiedmann, M., and Boor, K.J. 2007. Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the Listeriae. Appl. Environ. Microbiol. 73, 2806–2814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercier, C., Durrieu, C., Briandet, R., Domakova, E., Tremblay, J., Buist, G., and Kulakauskas, S. 2002. Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol. Microbiol. 46, 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Monk, I.R., Cook, G.M., Monk, B.C., and Bremer, P.J. 2004. Morphotypic conversion in Listeria monocytogenes biofilm formation: biological significance of rough colony isolates. Appl. Environ. Microbiol. 70, 6686–6694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen, U.T. and Burrows, L.L. 2014. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int. J. Food Microbiol. 187, 26–32.

    Article  PubMed  CAS  Google Scholar 

  • NicAogáin, K. and O’Byrne, C.P. 2016. The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Front. Microbiol. 7, 1865.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Toole, G., Kaplan, H.B., and Kolter, R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79.

    Article  PubMed  Google Scholar 

  • Pan, Y., Breidt, F.Jr., and Kathariou, S. 2006. Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl. Environ. Microbiol. 72, 7711–7717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renier, S., Chambon, C., Viala, D., Chagnot, C., Hébraud, M., and Desvaux, M. 2013. Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e. J. Proteomics 80, 183–195.

    Article  PubMed  CAS  Google Scholar 

  • Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L., and Griffin, P.M. 2011. Foodborne illness acquired in the United State-major pathogens. Emerg. Infect. Dis. 17, 7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva, S., Teixeira, P., Oliveira, R., and Azeredo, J. 2008. Adhesion to and viability of Listeria monocytogenes on food contact surfaces. J. Food Prot. 71, 1379–1385.

    Article  PubMed  Google Scholar 

  • Soni, K.A., Nannapaneni, R., and Tasara, T. 2011. The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes. Foodborne Pathog. Dis. 8, 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, P.S., Franklin, M.J., Williamson, K.S., Folsom, J.P., Boegli, L., and James, G.A. 2015. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 59, 3838–3847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiensuu, T., Andersson, C., Rydén, P., and Johansson, J. 2013. Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes. Mol. Microbiol. 87, 909–924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ting, L., Williams, T.J., Cowley, M.J., Lauro, F.M., Guilhaus, M., Raftery, M.J., and Cavicchioli, R. 2010. Cold adaptation in the marine bacterium, Sphingopyxis alaskensis, assessed using quantitative proteomics. Environ. Microbiol. 12, 2658–2676.

    PubMed  CAS  Google Scholar 

  • Tiong, H.K. and Muriana, P.M. 2016. RT-qPCR analysis of 15 genes encoding putative surface proteins involved in adherence of Listeria monocytogenes. Pathogens 5, 60.

    Article  PubMed Central  CAS  Google Scholar 

  • Uppuluri, P., Chaturvedi, A.K., Srinivasan, A., Banerjee, M., Ramasubramaniam, A.K., Köhler, J.R., Kadosh, D., and Lopez-Ribot, J.L. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6, e1000828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Veen, S. and Abee, T. 2010. Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Appl. Environ. Microbiol. 76, 7854–7860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verderosa, A.D., Totsika, M., and Fairfull-Smith, K.E. 2019. Bacterial biofilm eradication agents: a current review. Front. Chem. 7, 824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vermassen, A., Leroy, S., Talon, R., Provot, C., Popowska, M., and Desvaux, M. 2019. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front. Microbiol. 10, 331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates, J.R. 3rd., Eng, J.K., McCormack, A.L., and Schieltz, D. 1995. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67, 1426–1436.

    Article  PubMed  CAS  Google Scholar 

  • Yu, S., Su, T., Wu, H., Liu, S., Wang, D., Zhao, T., Jin, Z., Du, W., Zhu, M.J., Chua, S.L., et al. 2015. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res. 25, 1352–1367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. George Tsaprailis of the Arizona Proteomics Consortium for analyzing the proteomic data. Mass spectrometry and proteomics data were acquired by the Arizona Proteomics Consortium of the University of Arizona. We also appreciate Dr. Olga Pechanova and Dr. Tibor Pechan from the Institute for Genomics, Biocomputing & Biotechnology of Mississippi State University for giving technical advice regarding 2D-PAGE and proteomic analysis. The work was supported by the U.S. Department of Agriculture, Agricultural Research Service [grant number 58-6402-7-230].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinling Wang.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YJ., Wang, C. Proteomic analysis reveals the temperature-dependent presence of extracytoplasmic peptidases in the biofilm exoproteome of Listeria monocytogenes EGD-e. J Microbiol. 58, 761–771 (2020). https://doi.org/10.1007/s12275-020-9522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9522-8

Keywords

Navigation