Skip to main content
Log in

Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans

  • Protocol
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A chromatin immunoprecipitation (ChIP) assay is a method to identify how much a protein of interest binds to the DNA region. This method is indispensable to study the mechanisms of how the transcription factors or chromatin modifications regulate the gene expression. Candida albicans is a dimorphic pathogenic fungus, which can change its morphology very rapidly from yeast to hypha in response to the environmental signal. The morphological change of C. albicans is one of the critical factors for its virulence. Therefore, it is necessary to understand how to regulate the expression of genes for C. albicans to change its morphology. One of the essential methods for us to understand this regulation is a ChIP assay. There have been many efforts to optimize the protocol to lower the background signal and to analyze the results accurately because a ChIP assay can provide very different results even with slight differences in the experimental procedure. We have optimized the rapid and efficient ChIP protocol so that it could be applied equally for both yeast and hyphal forms of C. albicans. Our method in this protocol is also comparatively rapid to the method widely used. In this protocol, we described our rapid method for the ChIP assay in C. albicans in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adli, M. and Bernstein, B.E. 2011. Whole-genome chromatin profiling from limited numbers of cells using nano-ChlP-seq. Nat. Protoc.6, 1656–1668.

    Article  CAS  Google Scholar 

  • Biswas, S., Van Dijck, P., and Datta, A. 2007. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev.71, 348–376.

    Article  CAS  Google Scholar 

  • Collas, P. 2010. The current state of chromatin immunoprecipitation. Mol. Biotechnol.45, 87–100.

    Article  CAS  Google Scholar 

  • Ernst, J.F. 2000. Transcription factors in Candida albicans — environmental control of morphogenesis. Microbiology146, 1763–1774.

    Article  CAS  Google Scholar 

  • Furey, T.S. 2012. ChIP-seq and beyond: New and improved methodologies to detect and characterize protein-DNA interactions. Nat. Rev. Genet.13, 840–852.

    Article  CAS  Google Scholar 

  • Gow, N.A.R., Brown, A.J.P., and Odds, F.C. 2002. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol.5, 366–371.

    Article  CAS  Google Scholar 

  • Grainger, D.C., Overton, T.W., Reppas, N., Wade, J.T., Tamai, E., Hobman, J.L., Constantinidou, C., Strahl, K., Church, G., and Busby, S.J.W. 2004. Genomic studies with Escherichia coli MelR protein: Applications of chromatin immunoprecipitation and microarrays. J. Bacteriol.186, 6938–6943.

    Article  CAS  Google Scholar 

  • Haring, M., Offermann, S., Danker, T., Horst, L., Peterhansel, C., and Stam, M. 2007. Chromatin immunoprecipitation: Optimization, quantitative analysis and data normalization. Plant Methods3, 11.

    Article  Google Scholar 

  • Hoffman, E.A., Frey, B.L., Smith, L.M., and Auble, D.T. 2015. Formaldehyde crosslinking: A tool for the study of chromatin complexes. J. Biol. Chem.290, 26404–26411.

    Article  CAS  Google Scholar 

  • Jackson, V. 1978. Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell15, 945–954.

    Article  CAS  Google Scholar 

  • Kahramanoglou, C., Seshasayee, A.S.N., Prieto, A.I., Ibberson, D., Schmidt, S., Zimmermann, J., Benes, V., Fraser, G.M., and Luscombe, N.M. 2011. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res.39, 2073–2091.

    Article  CAS  Google Scholar 

  • Kim, J. and Sudbery, P. 2011. Candida albicans, a major human fungal pathogen. J. Microbiol.49, 171–177.

    Article  Google Scholar 

  • Kitamura, K. and Yamamoto, Y. 1972. Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch. Biochem. Biophys.153, 403–406.

    Article  CAS  Google Scholar 

  • Klis, F.M., Groot, P.D., and Hellingwerf, K. 2001. Molecular organization of the cell wall of Candida albicans Med. Mycol.39, 1–8.

    Article  CAS  Google Scholar 

  • Li, B., Carey, M., and Workman, J.L. 2007. The role of chromatin during transcription. Cell128, 707–719.

    Article  CAS  Google Scholar 

  • Lohse, M.B., Kongsomboonvech, P., Madrigal, M., Hernday, A.D., and Nobile, C.J. 2016. Genome-wide chromatin immunoprecipitation in Candida albicans and other yeasts. Methods Mol. Biol.1361, 161–184.

    Article  CAS  Google Scholar 

  • Lu, K., Ye, W., Zhou, L., Collins, L.B., Chen, X., Gold, A., Ball, L.M., and Swenberg, J.A. 2010. Structural characterization of formaldehyde-induced cross-links between amino acids and deoxynucleosides and their oligomers. J. Am. Chem. Soc.132, 3388–3399.

    Article  CAS  Google Scholar 

  • Marcilla, A., Elorza, M.V., Mormeneo, S., Rico, H., and Sentandreu, R. 1991. Candida albicans mycelial wall structure: Supramolecular complexes released by zymolyase, chitinase and β-mercaptoethanol. Arch. Microbiol.155, 312–319.

    Article  CAS  Google Scholar 

  • Mayer, F.L., Wilson, D., and Hube, B. 2013. Candida albicans pathogenicity mechanisms. Virulence4, 119–128.

    Article  Google Scholar 

  • Mitra, S., Rai, L.S., Chatterjee, G., and Sanyal, K. 2016. Chromatin immunoprecipitation (ChIP) assay in Candida albicans. Methods Mol. Biol.1356, 43–57.

    Article  CAS  Google Scholar 

  • Park, P.J. 2009. ChIP-seq: Advantages and challenges of a maturing technology. Nat. Rev. Genet.10, 669–680.

    Article  CAS  Google Scholar 

  • Rodríguez-Peña, J.M., Díez-Muñiz, S., Bermejo, C., Nombela, C., and Arroyo, J. 2013. Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucin-like protein Hkr1 but not Msb2. FEES Lett.87, 3675–3680.

    Article  Google Scholar 

  • Scott, J.H. and Schekman, R. 1980. Lyticase: Endoglucanase and protease activities that act together in yeast cell lysis. J. Bacteriol.142, 414–423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudbery, P., Gow, N., and Berman, J. 2004. The distinct morphogenic states of Candida albicans. Trends Microbiol.12, 317–324.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean Government (MSIP) (No. NRF-2015R1A4A1041105, NRF-2015R1-D1A1A02061743, and NRF-2018R1D1A1A02048280). Jueun Kim was supported by Global Ph.D. Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014H1A2A-1021300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Shin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, JS. Rapid method for chromatin immunoprecipitation (ChIP) assay in a dimorphic fungus, Candida albicans. J Microbiol. 58, 11–16 (2020). https://doi.org/10.1007/s12275-020-9143-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9143-2

Keywords

Navigation