Skip to main content
Log in

Fungal diversity in deep-sea sediments from Magellan seamounts environment of the western Pacific revealed by high-throughput Illumina sequencing

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

There are lots of seamounts globally whose primary production is disproportionally greater than the surrounding areas. Compared to other deep-sea environments, however, the seamounts environment is relatively less explored for fungal diversity. In the present study, we explored the fungal community structure in deep-sea sediments from four different stations of the Magellan seamounts environment by using high-throughput sequencing of the ITS1 region. A total of 1,897,618 ITS1 sequences were obtained. Among these sequences, fungal ITS1 sequences could be clustered into 1,662 OTUs. The majority of these sequences belonged to Ascomycota. In the genera level, the most abundant genus was Mortierella (4.79%), which was reported as a common fungal genus in soil and marine sediments, followed by Umbelopsis (3.80%), Cladosporium (2.98%), Saccharomycopsis (2.53%), Aspergillus (2.42%), Hortaea (2.36%), Saitozyma (2.20%), Trichoderma (2.12%), Penicillium (2.11%), Russula (1.86%), and Verticillium (1.40%). Most of these recovered genera belong to Ascomycota. The Bray-Curtis analysis showed that there was 37 to 85% dissimilarity of fungal communities between each two sediment samples. The Principal coordinates analysis clearly showed variations in the fungal community among different sediment samples. These results suggested that there was a difference in fungal community structures not only among four different sampling stations but also for different layers at the same station. The depth and geographical distance significantly affect the fungal community, and the effect of depth and geographical distance on the structure of the fungal community in the Magellan seamounts is basically same. Most of the fungi were more or less related to plants, these plant parasitic/symbiotic/endophytic fungi constitute a unique type of seamounts environmental fungal ecology, different from other marine ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addy, H.D., Piercey, M.M., and Currah, R.S. 2005. Microfungal endophytes in roots. Can. J. Bot. 83, 1–13.

    Google Scholar 

  • Anikouchine, W.A. and Ling, H.Y. 1967. Evidence for turbidite accumulation in trenches in the Indo-Pacific region. Mar. Geol. 5, 141–154.

    Google Scholar 

  • Baldrian, P. 2010. Effect of heavy metals on saprotrophic soil fungi. In Soil Heavy Metals. Soil Biology. vol. 19, pp. 263–279. Springer, Berlin, Heidelberg, Germany.

    Google Scholar 

  • Boehlert, G.W. and Genin, A. 1987. A review of the effects of sea-mounts on biological processes. In Keating, B.H., Fryer, P., Batiza, R., and Boehlert, G.W. (eds.), Seamounts, islands and atolls. vol. 43, pp. 319–334. American Geophysical Union, Washington D.C., USA.

    Google Scholar 

  • Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.A., and Caporaso, J.G. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59.

    CAS  PubMed  Google Scholar 

  • Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of southern wisconsin. Ecol. Monogr. 27, 326–349.

    Google Scholar 

  • Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R.H., Uroz, S., and Martin, F. 2009. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184, 449–456.

    PubMed  Google Scholar 

  • Burgaud, G., Calvez, T.L., Arzur, D., Vandenkoornhuyse, P., and Barbier, G. 2009. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol. 11, 1588–1600.

    PubMed  Google Scholar 

  • Clark, M.R., Rowden, A.A., Schlacher, T., Williams, A., Consalvey, M., Stocks, K.I., Rogers, A.D., O’Hara, T.D., White, M., Shank, T.M., et al. 2010. The ecology of seamounts: structure, function, and human impacts. Annu. Rev. Mar. Sci. 2, 253–278.

    Google Scholar 

  • Cloete, K.J., Valentine, A.J., Stander, M.A., Blomerus, L.M., and Botha, A. 2009. Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microb. Ecol. 57, 624–632.

    PubMed  Google Scholar 

  • Connell, L., Barrett, A., Templeton, A., and Staudigel, H. 2009. Fungal diversity associated with an active deep sea volcano: Vailulu’u seamounts, samoa. Geomicrobiol. J. 26, 597–605.

    CAS  Google Scholar 

  • Connell, L., Redman, R., Craig, S., Scorzetti, G., Iszard, M., and Rodriguez, R. 2008. Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb. Ecol. 56, 448–459.

    CAS  PubMed  Google Scholar 

  • Damare, S. and Raghukumar, C. 2008. Fungi and macroaggregation in deepsea sediments. Microb. Ecol. 56, 168–177.

    PubMed  Google Scholar 

  • Damare, S., Raghukumar, C., and Raghukumar, S. 2006. Fungi in deep-sea sediments of the central Indian basin. Deep Sea Res. Part 1, Oceanogr. Res. Pap. 53, 14–27.

    Google Scholar 

  • Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.

    CAS  PubMed  Google Scholar 

  • Fell, J.W. 1976. Yeasts in oceanic regions. In Jones, E.B.G. (eds.), Recent advances in aquatic mycology, pp. 93–124. Elec, London, United Kingdom.

    Google Scholar 

  • Fisk, M.C., Fahey, T.J., Sobieraj, J.H., Staniec, A.C., and Crist, T.O. 2011. Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant Soil 341, 279–293.

    CAS  Google Scholar 

  • Gai, C.S., Lacava, P.T., Maccheroni, W. Jr, Glienke, C., Araújo, W.L., Miller, T.A., and Azevedo, J.L 2009. Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy. J. Basic Microbiol. 49, 441–451.

    PubMed  Google Scholar 

  • Genin, A. and Boehlert, G.W. 1985. Dynamics of temperature and chlorophyll structures above a seamounts: an oceanic experiment. J. Mar. Res. 43, 907–924.

    CAS  Google Scholar 

  • Germino, M.J., Hasselquist, N.J., McGonigle, T., Smith, W.K., and Sheridan, P. 2006. Landscape- and age-based factors affecting fungal colonization of conifer seedling roots at the alpine tree line. Can. J. For. Res. 36, 901–909.

    Google Scholar 

  • Gihring, T.M., Green, S.J., and Schadt, C.W. 2011. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ. Microbiol. 14, 285–290.

    PubMed  Google Scholar 

  • Glasby, G.P., Ren, X., Shi, X., and Pulyaeva, I.A. 2007. Co-rich Mn crusts from the magellan seamounts cluster: the long journey through time. Geo-Mar. Lett. 27, 315–323.

    CAS  Google Scholar 

  • Gong, J., Shi, F., Ma, B., Dong, J., Pachiadaki, M., Zhang, X., and Edgcomb, V.P. 2015. Depth shapes α- and β-diversities of microbial eukaryotes in surficial sediments of coastal ecosystems. Environ. Microbiol. 17, 3722–3737.

    CAS  PubMed  Google Scholar 

  • Gryndler, M. 2000. Interactions of arbuscular mycorrhizal fungi with other soil organisms. In Kapulnik, Y. and Douds, D.D. (eds.), Arbuscular Mycorrhizas: Physiology and Function, pp. 239–262. Springer, Dordrecht, Netherland.

    Google Scholar 

  • Gunde-Cimermana, N., Zalarb, P., de Hoogc, S., and Plemenitas, A. 2000. Hypersaline waters in salterns-natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32, 235–240.

    CAS  PubMed  Google Scholar 

  • Hassett, B.T., Thines, M., Buaya, A., Ploch, S., and Gradinger, R. 2019. A glimpse into the biogeography, seasonality, and ecological functions of arctic marine Oomycota. IMA Fungus 10, 6.

    PubMed  PubMed Central  Google Scholar 

  • He, G.Y., Xu, W., Guo, S.S., Liu, W.H., and Luo, Z.H. 2018. Diversity and denitrification capability of cultivable fungi from deep-sea sediments of Yap trench. J. Appl. Oceanogr. 37, 229–240.

    Google Scholar 

  • Heezen, B.C., Ewing, M., and Menzies, R.J. 1955. The influence of submarine turbidity currents on abyssal productivity. Oikos 6, 170–182.

    Google Scholar 

  • Heuchert, B., Braun, U., and Schubert, K. 2005. Morphotaxonomic revision of fungicolous Cladosporium species (hyphomycetes). Schlechtendalia 13, 1–78.

    Google Scholar 

  • Hyde, K.D., Jones, E.B.G., Leaño, E., Pointing, S.B., Poonyth, A.D., and Vrijmoed, L.L.P. 1998. Role of fungi in marine ecosystems. Biodivers. Conserv. 7, 1147–1161.

    Google Scholar 

  • Jebaraj, C.S., Raghukumar, C., Behnke, A., and Stoeck, T. 2010. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol. Ecol. 71, 399–412.

    CAS  PubMed  Google Scholar 

  • Jones, E.B.J., Sakayaroj, J., Suetrong, S., Somrithipol, S., and Pang, L.K 2009. Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers. 35, 1–187.

    Google Scholar 

  • Kãudjalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S, Bahram, M., Bates, S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277.

    Google Scholar 

  • Kohlmeyer, J. and Kohlmeyer, E. 1979. Fungi on mangroves and other tropical shoreline trees. In Marine mycology: the higher fungi, pp. 92–104. Academic Press, Cambridge, Massachusettes, USA.

    Google Scholar 

  • Kwaśna, H., Bateman, G.L., and Ward, E. 2008. Determining species diversity of microfungal communities in forest tree roots by pureculture isolation and DNA sequencing. Appl. Soil Ecol. 40, 44–56.

    Google Scholar 

  • Langenheder, S. and Lindström, E.S. 2019. Factors influencing aquatic and terrestrial bacterial community assembly. Environ. Microbiol. Rep. 11, 306–315.

    PubMed  Google Scholar 

  • Lawrey, J.D. and Diederich, P. 2016. Lichenicolous fungi-world-wide checklist, including isolated cultures and sequences available. http://www.lichenicolous.net. (Jan 3, 2018)

  • Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G., and Vandenko-ornhuyse, P. 2009. Fungal diversity in deep sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75, 6415–6421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Campion-Alsumard, T., Golubic, S., and Priess, K. 1995. Fungi in corals: symbiosis or disease? Interactions between polyps and fungi cause pearl-like skeleton biomineralization. Mar. Ecol. Prog. Ser. 117, 137–147.

    Google Scholar 

  • Li, L., Singh, P., Liu, Y., Pan, S.Q., and Wang, G.Y. 2014. Diversity and biochemical features of culturable fungi from the coastal waters of Southern China. AMB Express 4, 60.

    PubMed  PubMed Central  Google Scholar 

  • Li, W., Wang, M., Burgaud, G., Yu, H., and Cai, L. 2019. Fungal community composition and potential depth-related driving factors impacting distribution pattern and trophic modes from epi- to abyssopelagic zones of the western pacific ocean. Microb. Ecol. 78, 820–831.

    PubMed  Google Scholar 

  • Li, M., Zhou, H., Pan, X., Xu, T., Zhang, Z., Zi, X., and Jiang, Y. 2017. Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing. Sci. Rep. 7, 45697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, X., Kim, H., Zhong, S., Chen, H., Hu, Z., and Zhou, B. 2014. De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics 15, 805.

    PubMed  PubMed Central  Google Scholar 

  • Mašínová, T., Bahnmann, B.D., Větrovský, T., Tomšovský, M., Merunková, K., and Baldrian, P. 2016. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 93, fiw223.

    PubMed  Google Scholar 

  • Melnikov, M.E. and Pletnev, S.P. 2013. Age and formation conditions of the co-rich manganese crust on guyots of the magellan seamounts. Lithol. Miner. Resour. 48, 1–13.

    CAS  Google Scholar 

  • Menard, H.W. 1964. Marine Geology of the Pacific. McGraw-Hill. New York, USA.

    Google Scholar 

  • Menkis, A., Vasiliauskas, R., Taylor, A.F.S., Stenström, E., Stenlid, J., and Finlay, R. 2006. Fungi in decaying roots of conifer seedlings in forest nurseries, afforested clear-cuts and abandoned farmland. Plant Pathol. 55, 117–129.

    CAS  Google Scholar 

  • Miyata, N., Tani, Y., Sakata, M., and Iwahori, K. 2007. Review: Mic-robial manganese oxide formation and interaction with toxic metals. J. Biosci. Bioeng. 104, 1–8.

    CAS  PubMed  Google Scholar 

  • Monchy, S., Sanciu, G., Jobard, M., Rasconi, S., Gerphagnon, M., Chabe, M., Cian, A., Meloni, D., Niquil, N., Christaki, U., et al. 2011. Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ. Microbiol. 13, 1433–1453.

    PubMed  Google Scholar 

  • Nagahama, T., Takahashi, E., Nagano, Y., Abdel-Wahab, M., and Miyazaki, M. 2011. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ. Microbiol. 13, 2359–2370.

    CAS  PubMed  Google Scholar 

  • Nagano, Y. and Nagahama, T. 2012. Fungal diversity in deep-sea extreme environments. Fungal Ecol. 5, 463–471.

    Google Scholar 

  • Nagano, Y., Nagahama, T., Hatada, Y., Nunoura, T., Takami, H., Miyazaki, J., Takai, K., and Horikoshi, K. 2010. Fungal diversity in deep-sea sediments-the presence of novel fungal groups. Fungal Ecol. 3, 316–325.

    Google Scholar 

  • Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., and Kennedy, P.G. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248.

    Google Scholar 

  • Novikov, G.V., Mel’Nikov, M.E., Bogdanova, O.Y., and Vikent’ev, I.V. 2014. Nature of co-bearing ferromanganese crusts of the Magellan Seamounts (Pacific ocean): communication 1. geology, mineralogy, and geochemistry. Lithol. Miner. Resour. 49, 1–22.

    CAS  Google Scholar 

  • Nutaratat, P., Srisuk, N., Arunrattiyakorn, P., and Limtong, S. 2014. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 118, 683–694.

    CAS  PubMed  Google Scholar 

  • Pivkin, M.V. 2000. Filamentous fungi associated with holothurians from the sea of Japan, off the primorye coast of Russia. Biol. Bull. 198, 101–109.

    CAS  PubMed  Google Scholar 

  • Raghukumar, C. 1986. Fungal parasites of the marine green alga Cladophora and Rhizoclonium. Botanica Marina 29, 289–297.

    Google Scholar 

  • Raghukumar, S. 2017. The Marine Environment and the Role of Fungi. In Fungi in Coastal and Oceanic Marine Ecosystems. Springer, Cham, New York, USA.

    Google Scholar 

  • Raghukumar, C. and Raghukumar, S. 1998. Barotolerance of fungi isolated from deep-sea sediments of the Indian ocean. Aquat. Microb. Ecol. 15, 153–163.

    Google Scholar 

  • Raghukumar, C., Raghukumar, S., Sheelu, G., Gupta, S.M., Nagender Nath, B., and Rao, B. 2004. Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 51, 1759–1768.

    CAS  Google Scholar 

  • Rédou, V., Navarri, M., Meslet-Cladière, L., Barbier, G., and Burgaud, G. 2015. Species richness and adaptation of marine fungi from deep-subsea floor sediments. Appl. Environ. Microbiol. 81, 3571–3583.

    PubMed  PubMed Central  Google Scholar 

  • Renker, C., Blanke, V., Börstler, B., Heinrichs, J., and Buscot, F. 2004. Diversity of Cryptococcus and Dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Res. 4, 597–603.

    CAS  PubMed  Google Scholar 

  • Richards, T.A., Jones, M.D.M., Leonard, G., and Bass, D. 2012. Marine fungi: their ecology and molecular diversity. Annu. Rev. Mar. Sci. 4, 495–522.

    Google Scholar 

  • Roth, F.J. Jr., Orpurt, PA., and Ahearn, D.J. 1964. Occurrence and distribution of fungi in a subtropical marine environment. Can. J. Bot. 42, 375–383.

    Google Scholar 

  • Sakaki, T., Takeshima, T., Tominaga, M., Hashimoto, H., and Kaw-aguchi, S. 1994. Recurrence of ICA-PCoA aneurysms after neck clipping. J. Neurosurg. 80, 58–63.

    CAS  PubMed  Google Scholar 

  • Sauvadet, A.L., Gobet, A., and Guillou, L. 2010. Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ. Microbiol. 12, 2946–2964.

    CAS  PubMed  Google Scholar 

  • Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, S.K., Wilson, K.L., Meyer, A.F., Gebauer, M.M., and King, A.J. 2008. Phylogeny and ecophysiology of opportunistic “Snow Molds” from a subalpine forest ecosystem. Microb. Ecol. 56, 681–687.

    CAS  PubMed  Google Scholar 

  • Shao, Z. and Sun, F. 2007. Intracellular sequestration of manganese and phosphorous in a metal-resistant fungus Cladosporium cladosporioides from deep-sea sediment. Extremophiles 11, 435–443.

    CAS  PubMed  Google Scholar 

  • Smith, S.E. and Read, D. 2008. Mycorrhizal symbiosis. Elsevier, Academic Press, Amsterdam, Netherland.

    Google Scholar 

  • Takishita, K., Tsuchiya, M., Reimer, J.D., and Maruyama, T. 2006. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatusis the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10, 165–169.

    CAS  PubMed  Google Scholar 

  • Tang, X., Yu, L., Xu, W., Zhang, X., Xu, X., Wang, Q., Wei, S.P., and Qiu, Y. 2020. Fungal diversity of deep-sea sediments in mid-oceanic ridge area of the east pacific and the South Indian Oceans. Botanica Marina 63, 183–196.

    Google Scholar 

  • Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., Thu, P.Q., Suija, A., et al. 2014. Global diversity and geography of soil fungi. Science 346, 1256688.

    PubMed  Google Scholar 

  • Tisthammer, K.H., Cobian, G.M., and Amend, A.S. 2016. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 19, 39–46.

    Google Scholar 

  • Toju, H., Tanabe, A.S., Yamamoto, S., and Sato, H. 2012. High-coverage its primers for the DNA-based identification of asco-mycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder, K.K. and Lennon, J.T. 2015. Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79, 243–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tseytlin, V.B. 1985. Energetics of fish populations inhabiting seamounts. Oceanology 25, 237–239.

    Google Scholar 

  • Turchetti, B., Buzzini, P., Goretti, M., Branda, E., Diolaiuti, G., D’Agata, C., Smiraglia, C., and Vaughan-Martini, A. 2008. Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol. Ecol. 63, 73–83.

    CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse, P., Baldauf, S.L., Leyval, C., Straczek, J., and Young, J.P.W. 2002. Extensive fungal diversity in plant roots. Science 295, 2051.

    PubMed  Google Scholar 

  • Vargas-Gastélum, L., Chong-Robles, J., Lago-Lestón, A., Darcy, J.L., Amend, A.S., and Riquelme, M. 2019. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ. Microbiol. 21, 4046–4061.

    PubMed  Google Scholar 

  • Vargas-Gastélum, L., Romero-Olivares, A.L., Escalante, A.E., Rocha-Olivares, A., Brizuela, C., and Riquelme, M. 2015. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol. Ecol. 91, fiv044.

    PubMed  Google Scholar 

  • Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. 2007. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff, T. 1979. Magrofaunal utilization of plant remains in the deep sea. Sarsia 64, 117–143.

    Google Scholar 

  • Xu, W., Gong, L.F., Pang, K.L., and Luo, Z.H. 2017. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the southwest Indian ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 131, 16–26.

    Google Scholar 

  • Xu, W., Guo, S.S., Gong, L.F., He, G.Y., Pang, K.L., and Luo, Z.H. 2018. Cultivable fungal diversity in deep-sea sediment of the east pacific ocean. Geomicrobiol. J. 35, 790–797.

    Google Scholar 

  • Xu, W., Pang, K.L., and Luo, Z.H. 2014. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microb. Ecol. 68, 688–698.

    CAS  PubMed  Google Scholar 

  • You, F., Han, T., Wu, J., Huang, B., and Qin, L. 2009. Antifungal secondary metabolites from endophytic Verticillium sp. Biochem. Syst. Ecol. 37, 162–165.

    CAS  Google Scholar 

  • Zalar, P., de Hoog, G.S., and Gunde-Cimerman, N. 1999. Ecology of halotolerant dothideaceous black yeasts. Stud. Mycol. 43, 38–48.

    Google Scholar 

  • Zhang, T., Shao, M., and Ye, L. 2012. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6, 1137–1147.

    CAS  PubMed  Google Scholar 

  • Zhang, X.Y., Wang, G.H., Xu, X.Y., Nong, X.H., Wang, J., Amin, M., and Qi, S.H. 2016. Exploring fungal diversity in deep-sea sediments from Okinawa trough using high-throughput illumina sequencing. Deep Sea Res. Part I Oceanogr. Res. Pap. 116, 99–105.

    Google Scholar 

  • Zhang, T., Wang, N.F., Zhang, Y.Q., Liu, H.Y., and Yu, L.Y. 2015. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden. Svalbard (High Arctic). Sci. Rep. 5, 1–11.

    Google Scholar 

Download references

Acknowledgments

This research work was financially supported by the China Ocean Mineral Resources R&D Association (COMRA) Program (DY135-B-01 and DY135-B-09), National Natural Science Foundation of China (41776170 and 41606145), and Scientific Research Foundation of Third Institute of Oceanography, SOA (2016039). We would like to thank the crew and scientific team of R/V Xiang yang hong 03, the pilots and the supporting team in 45th Da yang Cruise for the sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hua Luo.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Xu, W., Gao, Y. et al. Fungal diversity in deep-sea sediments from Magellan seamounts environment of the western Pacific revealed by high-throughput Illumina sequencing. J Microbiol. 58, 841–852 (2020). https://doi.org/10.1007/s12275-020-0198-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0198-x

Keywords

Navigation