Skip to main content
Log in

Alcohol dehydrogenase 1 participates in the Crabtree effect and connects fermentative and oxidative metabolism in the Zygomycete Mucor circinelloides

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mucor circinelloides is a dimorphic Zygomycete fungus that produces ethanol under aerobic conditions in the presence of glucose, which indicates that it is a Crabtree-positive fungus. To determine the physiological role of the alcohol dehydrogenase (ADH) activity elicited under these conditions, we obtained and characterized an allyl alcohol-resistant mutant that was defective in ADH activity, and examined the effect of adh mutation on physiological parameters related to carbon and energy metabolism. Compared to the Adh+ strain R7B, the ADH-defective (Adh-) strain M5 was unable to grow under anaerobic conditions, exhibited a considerable reduction in ethanol production in aerobic cultures when incubated with glucose, had markedly reduced growth capacity in the presence of oxygen when ethanol was the sole carbon source, and exhibited very low levels of NAD+-dependent alcohol de-hydrogenase activity in the cytosolic fraction. Further characterization of the M5 strain showed that it contains a 10-bp deletion that interrupts the coding region of the adhl gene. Complementation with the wild-type allele adh1+ by transformation of M5 remedied all the defects caused by the adh1 mutation. These findings indicate that in M. circinelloides, the product of the adh1 gene mediates the Crabtree effect, and can act as either a fermentative or an oxidative enzyme, depending on the nutritional conditions, thereby participating in the association between fermentative and oxidative metabolism. It was found that the spores of M. circinelloides possess low mRNA levels of the ethanol assimilation genes (adl2 and acs2), which could explain their inability to grow in the alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo-Aguilar, F.J., Espino-Saldaña, A.E., León-Rodríguez, I.L., Ávila-Rodríguez, M., Wrobel, K., Wrobel, K., Lappe, P., Ulloa, M., and Gutiérrez-Corona, J.F. 2006. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Can. J. Microbiol. 52, 809–815.

    Article  CAS  PubMed  Google Scholar 

  • Bartnicki-García S. 1963. Symposium on biochemical bases of morphogenesis in fungi III Mold-yeast dimorphism of Mucor. Bacteriol. Rev. 27, 293–304.

    PubMed  PubMed Central  Google Scholar 

  • Bartnicki-Garcia, S., Nelson, N., and Cota-Robles, E. 1968. Electron microscopy of spore germination and cell wall formation in Mucor rouxii. Arch. Mikrobiol. 63, 242–255.

    Article  CAS  PubMed  Google Scholar 

  • Bartnicki-García, S. and Nickerson, W.J. 1962. Nutrition, growth, and morphogenesis of Mucor rouxii. J. Bacteriol. 84, 841–858.

    PubMed  PubMed Central  Google Scholar 

  • Bergmeyer, H.U. 1983. Reagents for enzymatic analysis, pp. 139. In Bergmeyer, H.U. (ed.), Methods of enzymatic analysis. Verlag Chemie, Weinheim, Germany.

    Google Scholar 

  • Chayakulkeeree, M., Ghannoum, M., and Perfect, J. 2006. Zygo-mycosis: the re-emerging fungal infection. Eur. J. Clin. Microbiol. Infect. Dis. 25, 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Corrales-Escobosa, A.R., Rangel-Porras, R.A., Meza-Carmen, V., Gonzalez-Hernandez, G.A., Torres-Guzman, J.C., Wrobel, K., Wrobel, K., Roncero, M.I.G., and Gutierrez-Corona, J.F. 2011. Fusarium oxysporum Adh1 has dual fermentative and oxidative functions and is involved in fungal virulence in tomato plants. Fungal Genet. Biol. 48, 886–895.

    Article  CAS  PubMed  Google Scholar 

  • de Kok, S., Kozak, B.U., Pronk, J.T., and van Maris, A.J.A. 2012. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res. 12, 387–397.

    Article  CAS  PubMed  Google Scholar 

  • de Smidt, O., du Preez, J.C., and Albertyn, J. 2008. The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res. 8, 967–978.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, J.A., Lennartsson, P.R., Edebo, L., and Taherzadeh, M.J. 2013. Zygomycetes-based biorefinery: Present status and future prospects. Bioresour. Technol. 135, 523–532.

    Article  CAS  PubMed  Google Scholar 

  • Freeling, M. and Bennett, D.C. 1985. Maize Adh1. Annu. Rev. Genet. 19, 297–323.

    Article  CAS  PubMed  Google Scholar 

  • Hagman, A., Säll, T., Compagno, C., and Piskur, J. 2013. Yeast “Make-Accumulate-Consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8, e68734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim, A.S. and Spellberg, B. 2006. Zygomycetes as agents of infectious disease in humans, pp. 429–440. In Heitman, J., Filler, S.G., Edwards, Jr. J.E., and Mitchell, A.P. (eds.), Molecular principles of fungal pathogenesis. American Society for Microbiology Press, Washington, D.C., USA.

    Google Scholar 

  • Jacobs, M., Dolferus, R., and Van den Bossche, D. 1988. Isolation and biochemical analysis of ethyl methanesulfonate induced alcohol dehydrogenase null mutants of Arabidopsis thaliana (L.) Heynh. Biochem. Genet. 26, 105–122.

    Article  CAS  PubMed  Google Scholar 

  • Karimi, K. and Zamani, A. 2013. Mucor indicus: biology and industrial application perspectives: a review. Biotechnol. Adv. 31, 466–481.

    Article  CAS  PubMed  Google Scholar 

  • Khan, Z.U., Ahmad, S., Brazda, A., and Chandy, R. 2009. Mucor circinelloides as a cause of invasive maxillofacial zygomycosis: an emerging dimorphic pathogen with reduced susceptibility to posaconazole. J. Clin. Microbiol. 47, 1244–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K.L., Buckley, H.R., and Campbell, C.C. 1975. An aminoacid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148–153.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.C., Li, A., Calo, S., and Heitman, J. 2013. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog. 9, e1003625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linz, J.E. and Orlowski, M. 1982. Stored mRNA in sporangiospores of the fungus Mucor recemosus. J. Bacteriol. 150, 1138–1144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Alvarez, A., Díaz-Pérez, A.L., Sosa-Aguirre, C., Macías-Rod-riguez, L., and Campos-García, J. 2012. Ethanol yield and volatile compound content in fermentation of agave must by Kluyvero-myces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J. Biosci. Bioeng. 113, 614–618.

    Article  CAS  PubMed  Google Scholar 

  • Lübbehüsen, T.L., Nielsen, J., and Mclntyre, M. 2004. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth. Appl. Microbiol. Biotechnol. 63, 543–548.

    Article  CAS  PubMed  Google Scholar 

  • Lutstorf, U. and Megnet, R. 1968. Multiple forms of alcohol dehy-drogenase in Saccharomyces cerevisiae. I. Physiological control of ADH-2 and properties of ADH-2 and ADH-4. Arch. Biochem. Biophys. 126, 933–944.

    Article  CAS  PubMed  Google Scholar 

  • McIntyre, M., Breum, J., Arnau, J., and Nielsen, J. 2002. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Appl. Microbiol. Biotechnol. 58, 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza, L., Vilela, R., Voelz, K., Ibrahim, A.S., Voigt, K., and Lee, S.C. 2015. Human fungal pathogens of mucorales and entomo-phthorales. Cold Spring Harb. Perspect. Med. 5, a019562.

    Article  CAS  PubMed Central  Google Scholar 

  • Nikolova, P. and Ward, O.P. 1991. Production of L-phenylacetyl carbinol by biotransformation: product and by-product formation and activities of the key enzymes in wild-type and ADH isoenzyme mutants of Saccharomyces cerevisiae. Biotechnol. Bioeng. 20, 493–498.

    Article  Google Scholar 

  • Orlowski, M. 1991. Mucor dimorphism. Microbiol. Rev. 55, 234–258.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlowski, M. and Sypherd, P.S. 1978. Regultion of macromolecular synthesis during hyphal germ tube emergence from Mucor race-mosus sporangiospores. J. Bacteriol. 134, 76–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panagiotou, G., Villas-Boas, S.G., Christakopoulos, P., Nielsen, J., and Olsson, L. 2005. Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J. Biotechnol. 115, 425–434.

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer, T. and Morley, A. 2014. An evolutionary perspective on the Crabtree effect. Front. Mol. Biosci. 1, 17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pronk. J.T., Yde Steensma, H., and Van Dijken, J.P. 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12, 1607–1633.

    Article  CAS  PubMed  Google Scholar 

  • Rangel-Porras, R.A., Meza-Carmen, V., Martínez-Cadena, G., Torres-Guzmán, J.C. González-Hernandez, G.A., Arnau, J., and Gutiérrez-Corona, J.F. 2005. Molecular analysis of an NAD-dependent alcohol dehydrogenase from the zygomycete Mucor circinelloides. Mol. Genet. Genomics 274, 354–363.

    Article  CAS  PubMed  Google Scholar 

  • Reid, M.F. and Fewson, C.A. 1994. Molecular characterization of microbial alcohol dehydrogenases. Crit. Rev. Microbiol. 20, 13–56.

    Article  CAS  PubMed  Google Scholar 

  • Roncero, M.I.G. 1984. Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosyl-polifungin. Carlsberg Res. Commun. 49, 685–690.

    Article  CAS  Google Scholar 

  • Salcedo-Hernández, R. and Ruiz-Herrera, J. 1993. Isolation and characterization of a mycelial cytochrome aa3-deficient mutant and the role of mitochondria in dimorphism of Mucor rouxii. Exp. Mycol. 17, 142–154.

    Article  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  • Sypherd, P., Borgia, P.T., and Paznokas, J.L. 1978. Biochemistry of dimorphism in the fungus Mucor. Adv. Microb. Physiol. 18, 67–104.

    Article  CAS  PubMed  Google Scholar 

  • Torres-Guzmán, J.C., Arreola-García, G.A., Zazueta-Sandoval, R., Carrillo-Rayas, T., Martínez-Cadena, G., and Gutiérrez-Corona, F. 1994. Genetic evidence for independence between fermentative metabolism (ethanol accumulation) and yeast-cell development in the dimorphic fungus Mucor rouxii. Curr. Genet. 26, 166–171.

    Article  PubMed  Google Scholar 

  • Valle-Maldonado, M.I., Jácome-Galarza, I.E., Gutiérrez-Corona, F., Ramírez-Díaz, M.I., Campos-García, J., and Meza-Carmen, V. 2015. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinel-loides. Mol. Biol. Rep. 42, 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Williamson, V.M., Long, M., and Theodoris, G. 1991. Isolation of Caenorhabditis elegans mutants lacking alcohol dehydrogenase activity. Biochem. Genet. 29, 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Wills, C. 1990. Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Crit. Rev. Biochem. Mol. Biol. 25, 245–280.

    Article  CAS  PubMed  Google Scholar 

  • Wills, C. and Phelps, J. 1975. A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity. Arch. Biochem. Biophys. 167, 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Wolff, A.M. and Arnau, J. 2002. Cloning of glyceraldehyde-3-phos-phate dehydrogenase-encoding genes in Mucor circinelloides (Syn. racemosus) and use of the gpd1 promoter for recombinant protein production. Fungal Genet. Biol. 35, 21–29.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Z., Luo, S., Li, X., Wu, X., Pan, L., and Jiang, S. 2009. Screening of allyl alcohol resistant mutant of Rhizopus oryzae and its fermentation characterization. Afr. J. Biotechnol. 8, 280–284.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 29078N, 41590, and 167071 from SEP-CONACyT, México. RARP, SPDP, VAC, MIVM, and JMMH each received a fellowship from CONACyT, México. We thank María E. Cardenas for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Félix Gutiérrez-Corona.

Additional information

J. Félix Gutiérrez-Corona and Víctor Meza-Carmen were the senior authors.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel-Porras, R.A., Díaz-Pérez, S.P., Mendoza-Hernández, J.M. et al. Alcohol dehydrogenase 1 participates in the Crabtree effect and connects fermentative and oxidative metabolism in the Zygomycete Mucor circinelloides. J Microbiol. 57, 606–617 (2019). https://doi.org/10.1007/s12275-019-8680-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8680-z

Keywords

Navigation