Skip to main content
Log in

Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cordyceps militaris is a species of Cordyceps that is classified in the Cordycipitaceae family and is well known in East Asia as a traditional medicinal mushroom. Its artificial fruit body has been widely cultivated for commercial use in cosmetics, functional food, and medicine. To explore the metabolites associated with fruit body development, we conducted gas chromatography mass spectrometry (GC-MS) analyses based on developmental stage, which was divided into the growth period (stage 1, stage 2, and stage 3) and aging period (stage 4). We detected 39 biochemical metabolites associated with nucleotide, carbohydrate, and amino acid metabolism. Cordycepin, one of the representative bioactive compounds in C. militaris, was significantly enriched in stage 4 of aging period and is associated with glucose accumulation. The accumulation of cordycepin in stage 4 of aging period also seems to be related to the glutamine and glutamic acid pathway. Our results also showed enrichment of other bioactive compounds such as mannitol and xylitol in stage 4 of aging period. Our metabolomic profiling based on the developmental stages of C. militaris is useful for exploring bioactive compounds (e.g., cordycepin, mannitol, GABA, and xylitol) that are enriched in stage 4 of aging period and understanding the biosynthetic mechanisms associated with cordycepin production. Through optimization of fruit body cultivation by selecting stage 4 of aging period as a harvesting time, our findings can be utilized in food and medical applications of C. militaris in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chatterjee, R., Srinivasan, K.S., and Maiti, P.C. 1957. Cordyceps sinensis (Berkeley) saccardo: Structure of cordycepic acid. J. Am. Pharm. Assoc. 46, 114–118.

    Article  CAS  Google Scholar 

  • Das, S.K., Masuda, M., Hatashita, M., Sakurai, A., and Sakakibara, M. 2010. Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Process Biochem. 45, 129–132.

    Article  CAS  Google Scholar 

  • Erecińska, M. and Silver, I.A. 1990. Metabolism and role of glutamate in mammalian brain. Prog. Neurobiol. 35, 245–296.

    Article  PubMed  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., and Wold, S. 2006. Multi-and megavariate data analysis: Part II: Advanced applications and method extensions. Umetrics Inc. Umea, Sweden.

    Google Scholar 

  • Horton, H.R., Moran, L.A., Ochs, R.S., Rawn, D.J., and Scimgeour, K.G. 2002. Principles of Biochemistry, 3rd Ed. Prentice Hall Inc., Upper Saddle River, N.J., USA.

    Google Scholar 

  • Hyun, S.H., Lee, S.Y., Sung, G.H., Kim, S.H., and Choi, H.K. 2013. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage. PLoS One 8, e73065.

    Article  CAS  Google Scholar 

  • Jung, E.C., Kim, K.D., Bae, C.H., Kim, J.C., Kim, D.K., and Kim, H.H. 2007. A mushroom lectin from ascomycete Cordyceps militaris. Biochim. Biophys. Acta 1770, 833–838.

    Article  CAS  PubMed  Google Scholar 

  • Kang, N., Lee, H.H., Park, I., and Seo, Y.S. 2017. Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology 45, 31–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, C., Wen, T.C., Kang, J.C., Meng, Z.B., Li, G.R., and Hyde, K.D. 2014. Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. Sci. World J. 2014, 510627.

    Google Scholar 

  • Kodama, E.N., McCaffrey, R.P., Yusa, K., and Mitsuya, H. 2000. Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem. Pharmacol. 59, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Leung, P.H. and Wu, J.Y. 2007. Effects of ammonium feeding on production of bioactive metabolites (cordycepin and exopolysaccharides) in mycelial culture of a Cordyceps sinensis fungus. J. Appl. Microbiol. 103, 1942–1949.

    Article  CAS  PubMed  Google Scholar 

  • Lü, J.M., Lin, P.H., Yao, Q., and Chen, C. 2010. Chemical and mole cular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 14, 840–860.

    Article  CAS  PubMed  Google Scholar 

  • Mao, X.B., Eksriwong, T., Chauvatcharin, S., and Zhong, J.J. 2005. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem. 40, 1667–1672.

    Article  CAS  Google Scholar 

  • Ng, T.B. and Wang, H.X. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57, 1509–1519.

    Article  CAS  PubMed  Google Scholar 

  • Nomani, A.Z., Nabi, Z., Rashid, H., Janjua, J., Nomani, H., Majeed, A., Chaudry, S.R. and Mazhar, A.S. 2014. Osmotic nephrosis with mannitol: review article Ren. Fail. 36, 1169–1176.

    Article  CAS  Google Scholar 

  • Oh, T.J., Hyun, S.H., Lee, S.G., Chun, Y.J., Sung, G.H., and Choi, H.K. 2014. NMR and GC-MS based metabolic profiling and free-radical scavenging activities of Cordyceps pruinosa mycelia cultivated under different media and light conditions. PLoS One 9, e90823.

    Article  CAS  Google Scholar 

  • Ouyang, Y.Y., Zhang, Z., Cao, Y.R., Zhang, Y.Q., Tao, Y.Y., Liu, C.H., Xu, L.M., and Guo, J.S. 2013. Effects of cordyceps acid and cordycepin on the inflammatory and fibrogenic response of hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi 21, 275–278.

    CAS  PubMed  Google Scholar 

  • Park, J.P., Kim, S.W., Hwang, H.J., and Yun, J.W. 2001. Optimization of submerged culture conditions for the mycelial growth and exo‐biopolymer production by Cordyceps militaris. Lett. Appl. Microbiol. 33, 76–81.

    Article  CAS  PubMed  Google Scholar 

  • Park, E.J. and Lee, W.Y. 2010. Tryptophan enhanced accumulation of phenolic compounds via chorismate mutase activation in the Ganoderma neo-japonicum mycelia. J. Korean Soc. Appl. Biol. Chem. 53, 364–370.

    Article  CAS  Google Scholar 

  • Parsons, H.M., Ekman, D.R., Collette, T.W., and Viant, M.R. 2009. Spectral relative standard deviation: A practical benchmark in metabolomics. Analyst 134, 478–485.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, R.R. 2008. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69, 1469–1495.

    Article  CAS  PubMed  Google Scholar 

  • Raethong, N., Laoteng, K., and Vongsangnak, W. 2018. Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Sci. Rep. 8, 9250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, K. and Matsuda, F. 2010. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 463–489.

    Article  CAS  PubMed  Google Scholar 

  • Shih, I.L., Tsai, K.L., and Hsieh, C. 2007. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem. Eng. J. 33, 193–201.

    Article  CAS  Google Scholar 

  • Shrestha, B., Tanaka, E., Han, J.G., Oh, J., Han, S.K., and Sung, G.H. 2014. A brief chronicle of the genus Cordyceps Fr., the oldest valid genus Cordycipitaceae (Hypocreales, Ascomycota). Mycobiology 42, 93–99.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha, B., Zhang, W., Zhang, Y., and Liu, X. 2012. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 11, 599–614.

    Article  Google Scholar 

  • Shurubor, Y.I., Paolucci, U., Krasnikov, B.F., Matson, W.R., and Kristal, B.S. 2005. Analytical precision, biological variation, and mathematical normalization in high data density metabolomics. Metabolomics 1, 75–85.

    Article  CAS  Google Scholar 

  • Struzyńska, L. and Sulkowski, G. 2004. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions. J. Inorg. Biochem. 98, 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Su, N.W., Wu, S.H., Chi, C.W., Liu, C.J., Tsai, T.H., and Chen, Y.J. 2017. Metronomic cordycepin therapy prolongs survival of oral cancer-bearing mice and inhibits epithelial-mesenchymal transition. Molecules 22, 629.

    Article  CAS  PubMed Central  Google Scholar 

  • Sung, G.H., Hywel-Jones, N.L., Sung, J.M., Luangsa-ard, J.J., Shrestha, B., and Spatafora, J.W. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 5–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuli, H.S., Kashyap, D., and Sharma, A.K. 2015. Cordycepin: A Cordyceps metabolite with promising therapeutic potential, pp. 1–22. In Merillon, J.M. and Ramawat, K. (eds.), Fungal metabolites. Reference Series in Phytochemistry. Springer.

    Google Scholar 

  • Tuli, H.S., Sharma, A.K., Sandhu, S.S., and Kashyap, D. 2013. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 93, 863–869.

    Article  CAS  PubMed  Google Scholar 

  • Wada, T., Sumardika, I.W., Saito, S., Ruma, I.M.W., Kondo, E., Shibukawa, M., and Sakaguchi, M. 2017. Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1061–1062, 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Won, S.Y. and Park, E.H. 2005. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol. 96, 555–561.

    Article  PubMed  Google Scholar 

  • Xia, Y., Luo, F., Shang, Y., Chen, P., Lu, Y., and Wang, C. 2017. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell. Chem. Biol. 24, 1479–1489.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., Sinelnikov, I.V., Han, B., and Wishart, D.S. 2015. Metabo-Analyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 43, W251–W257.

    Google Scholar 

  • Yoo, H.S., Shin, J.W., Cho, J.H., Son, C.G., Lee, Y.W., Park, S.Y., and Cho, C.K. 2004. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol. Sin. 25, 657–665.

    CAS  PubMed  Google Scholar 

  • Yu, H.M., Wang, B.S., Huang, S.C., and Duh, P.D. 2006. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J. Agric. Food Chem. 54, 3132–3138.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Liu, Y., Di, Z., Han, C.C., and Liu, Z. 2016. The strategies for increasing cordycepin production of Cordyceps militaris by liquid fermentation. Fungal Genom. Biol. 6, 134.

    Article  CAS  Google Scholar 

  • Zheng, P., Xia, Y., Xiao, G., Xiong, C., Hu, X., Zhang, S., Zheng, H., Huang, Y., Zhou, Y., Wang, S., et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12, R116.

    Google Scholar 

  • Zhou, X., Meyer, C.U., Schmidtke, P., and Zepp, F. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. Eur. J. Pharmacol. 453, 309–317.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Kyoon Choi or Gi-Ho Sung.

Additional information

Supplemental material for this article may be found at https://doi.org/www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J., Yoon, DH., Shrestha, B. et al. Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies. J Microbiol. 57, 54–63 (2019). https://doi.org/10.1007/s12275-019-8486-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8486-z

Keywords

Navigation