Skip to main content
Log in

Lysobacter panacihumi sp. nov., isolated from ginseng cultivated soil

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, non-motile, aerobic, catalase-, and oxidasepositive bacterial strain, designated DCY117T, was isolated from ginseng cultivated soil in Gochang-gun, Republic of Korea, and was characterized taxonomically using a multifaceted approach. 16S rRNA gene sequence analysis revealed that strain DCY117T showed highest similarity to Lysobacter ruishenii CTN-1T (95.3%). Phylogenetic analysis revealed that closely related relatives of strain DCY117T were L. aestuarii S2-CT (95.1%), L. daejeonensis GH1-9T (95.0%), and L. caeni BUT-8T (94.9%). Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) were the major polar lipids of strain DCY117T. The major isoprenoid quinone was Q-8. The major cellular fatty acids of strain DCY117T were iso-C15:0, iso-C16:0, and summed feature 9 (comprising iso-C17:1ω9c and/or 10-methyl-C16:0). Genomic DNA G + C content was 61.8 mol%. On the basis of our findings, strain DCY117T is a novel species in the genus Lysobacter. We propose the name Lysobacter panacihumi sp. nov., and the type strain is DCY117T (= KCTC 62019T = JCM 32168T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.

    PubMed  CAS  Google Scholar 

  • Choi, H., Im, W.T., and Park, J.S. 2018. Lysobacter spongiae sp. nov., isolated from spongin. J. Microbiol. 56, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Choi, J.H., Seok, J.H., Cha, J.H., and Cha, C.J. 2014. Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int. J. Syst. Evol. Microbiol. 64, 2193–2197.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, P. and Cook, F. 1978. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int. J. Syst. Evol. Microbiol. 28, 367–393.

    Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406–416.

    Article  Google Scholar 

  • Glickmann, E. and Dessaux, Y. 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793–796.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  • Jeong, S.E., Lee, H.J., and Jeon, C.O. 2016. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int. J. Syst. Evol. Microbiol. 66, 1346–1351.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.P., Nguyen, N.L., Kim, Y.J., Hoang, V.A., Bae, K.S., and Yang, D.C. 2015. Paralcaligenes ginsengisoli sp. nov., isolated from ginseng cultivated soil. Antonie van Leeuwenhoek 108, 619–626.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.J., Ahn, J.H., Weon, H.Y., Joa, J.H., Hong, S.B., Seok, S.J., Kim, J.S., and Kwon, S.W. 2017. Lysobacter solanacearum sp. nov., isolated from rhizosphere of tomato. Int. J. Syst. Evol. Microbiol. 67, 1102–1106.

    Article  PubMed  Google Scholar 

  • Kimura, M. 1979. The neutral theory of molecular evolution. Sci. Am. 241, 98–129.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Lee, J.W., Im, W.T., Kim, M.K., and Yang, D.C. 2006. Lysobacter koreensis sp. nov., isolated from a ginseng field. Int. J. Syst. Evol. Microbiol. 56, 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D., Jang, J.H., Cha, S., and Seo, T. 2017. Lysobacter humi sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 67, 951–955.

    Article  PubMed  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Evol. Microbiol. 39, 159–167.

    CAS  Google Scholar 

  • Minnikin, D., O’donnell, A., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Park, J.H., Kim, R., Aslam, Z., Jeon, C.O., and Chung, Y.R. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int. J. Syst. Evol. Microbiol. 58, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Romanenko, L.A., Uchino, M., Tanaka, N., Frolova, G.M., and Mikhailov, V.V. 2008. Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int. J. Syst. Evol. Microbiol. 58, 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Schwyn, B. and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, A. and Johri, B. 2003. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res. 158, 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi, M.Z. and Im, W.T. 2016a. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 66, 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi, M.Z. and Im, W.T. 2016b. Lysobacter pocheonensis sp. nov., isolated from soil of a ginseng field. Arch. Microbiol. 198, 551–557.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, G.L., Wang, L., Chen, H.H., Shen, B., Li, S.P., and Jiang, J.D. 2011. Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int. J. Syst. Evol. Microbiol. 61, 674–679.

    Article  PubMed  CAS  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weon, H.Y., Kim, B.Y., Baek, Y.K., Yoo, S.H., Kwon, S.W., Stackebrandt, E., and Go, S.J. 2006. Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int. J. Syst. Evol. Microbiol. 56, 947–951.

    Article  PubMed  CAS  Google Scholar 

  • Ye, X.M., Chu, C.W., Shi, C., Zhu, J.C., He, Q., and He, J. 2015. Lysobacter caeni sp. nov., isolated from the sludge of a pesticide manufacturing factory. Int. J. Syst. Evol. Microbiol. 65, 845–850.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Chun Yang.

Additional information

Supplemental material for this article may be found at https://doi.org/www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, Y., Kang, JP., Hurh, J. et al. Lysobacter panacihumi sp. nov., isolated from ginseng cultivated soil. J Microbiol. 56, 748–752 (2018). https://doi.org/10.1007/s12275-018-8202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8202-4

Keywords

Navigation