Skip to main content
Log in

The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacteriophage endolysin is one of the most promising antibiotic substitutes, but in Gram-negative bacteria, the outer membrane prevents the lysin from hydrolyzing peptidoglycans and blocks the development of lysin applications. The prime strategy for new antibiotic substitutes is allowing lysin to access the peptidoglycan from outside of the bacteria by reformation of the lysin. In this study, the novel Escherichia coli (E. coli) phage lyase lysep3, which lacks outside-in catalytic ability, was fused with the N-terminal region of the Bacillus amyloliquefaciens lysin including its cell wall binding domain D8 through the best manner of protein fusion based on the predicted tertiary structure of lysep3-D8 to obtain an engineered lysin that can lyse bacteria from the outside. Our results showed that lysep3-D8 could lyse both Gramnegative and Gram-positive bacteria, whereas lysep3 and D8 have no impact on bacterial growth. The MIC of lysep3-D8 on E. coli CVCC1418 is 60 μg/ml; lysep3-D8 can inhibit the growth of bacteria up to 12 h at this concentration. The bactericidal spectrum of lysep3-D8 is broad, as it can lyse of all of 14 E. coli strains, 3 P. aeruginosa strains, 1 Acinetobacter baumannii strain, and 1 Streptococcus strain. Lysep3-D8 has sufficient bactericidal effects on the 14 E. coli strains tested at the concentration of 100 μg/ml. The cell wall binding domain of the engineered lysin can destroy the integrity of the outer membrane of bacteria, thus allowing the catalytic domain to reach its target, peptidoglycan, to lyse the bacteria. Lysep3-D8 can be used as a preservative in fodder to benefit the health of animals. The method we used here proved to be a successful exploration of the reformation of phage lysin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Briers, Y. and Lavigne, R. 2015. Breaking barriers: Expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiol. 10, 377–390.

    Article  CAS  PubMed  Google Scholar 

  • Briers, Y., Walmagh, M., Van Puyenbroeck, V., Cornelissen, A., Cenens, W., Aertsen, A., Oliveira, H., Azeredo, J., Verween, G., Pirnay, J.P., et al. 2014. Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. mBio 5, e1314–e1379.

    Article  Google Scholar 

  • Haeusser, D.P., Hoashi, M., Weaver, A., Brown, N., Pan, J., Sawitzke, J.A., Thomason, L.C., Court, D.L., and Margolin, W. 2014. The Kil peptide of bacteriophage lambda blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet. 10, e1004217.

    Article  Google Scholar 

  • Jun, S.Y., Jung, G.M., Yoon, S.J., Choi, Y.J., Koh, W.S., Moon, K.S., and Kang, S.H. 2014. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob. Agents Chemother. 58, 2084–2088.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kåhrström, C.T. 2012. Antimicrobials: A killer hybrid. Nat. Rev. Microbiol. 10, 520–521.

    Article  PubMed  Google Scholar 

  • Lai, M., Lin, N., Hu, A., Soo, P., Chen, L., Chen, L., and Chang, K. 2011. Antibacterial activity of Acinetobacter baumannii phage ?AB2 endolysin (LysAB2) against both Gram-positive and Gramnegative bacteria. Appl. Microbiol. Biotechnol. 90, 529–539.

    Article  CAS  PubMed  Google Scholar 

  • Lai, M., Soo, P., Lin, N., Hu, A., Chen, Y., Chen, L., and Chang, K. 2013. Identification and characterisation of the putative phagerelated endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Int. J. Antimicrob. Agents 42, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Lukacik, P., Barnard, T.J., Keller, P.W., Chaturvedi, K.S., Seddiki, N., Fairman, J.W., Noinaj, N., Kirby, T.L., Henderson, J.P., Steven, A.C., et al. 2012. Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc. Natl. Acad. Sci. USA 109, 9857–9862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, M., Wang, S., Yan, G., Sun, C., Feng, X., Gu, J., Han, W., and Lei, L. 2015. Genome sequencing and analysis of an Escherichia coli phage vB_EcoM-ep3 with a novel lysin, Lysep3. Virus Genes 50, 487–497.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, S., Uchiyama, J., Takemura-Uchiyama, I., and Daibata, M. 2014. Perspective: The age of the phage. Nature 509, S9.

    Article  CAS  PubMed  Google Scholar 

  • Morita, M., Tanji, Y., Mizoguchi, K., Soejima, A., Orito, Y., and Unno, H. 2001a. Antibacterial activity of Bacillus amyloliquefaciens phage endolysin without holin conjugation. J. Biosci. Bioeng. 91, 469–473.

    Article  CAS  PubMed  Google Scholar 

  • Morita, M., Tanji, Y., Orito, Y., Mizoguchi, K., Soejima, A., and Unno, H. 2001b. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett. 500, 56–59.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, H., Melo, L.D.R., Santos, S.B., Nobrega, F.L., Ferreira, E.C., Cerca, N., Azeredo, J., and Kluskens, L.D. 2013. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 87, 4558–4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orito, Y., Morita, M., Hori, K., Unno, H., and Tanji, Y. 2004. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl. Microbiol. Biotechnol. 65, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Parent, K.N., Erb, M.L., Cardone, G., Nguyen, K., Gilcrease, E.B., Porcek, N.B., Pogliano, J., Baker, T.S., and Casjens, S.R. 2014. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol. Microbiol. 92, 47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prada, Y.A., Guzmán, F., Rondón, P., Escobar, P., Ortíz, C., Sierra, D.A., Torres, R., and Mejía-Ospino, E. 2016. A new synthetic peptide with in vitro antibacterial potential against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob. Proteins 8, 134–140.

    Article  CAS  PubMed  Google Scholar 

  • Reardon, S. 2014. Phage therapy gets revitalized. Nature 510, 15–16.

    Article  CAS  PubMed  Google Scholar 

  • Schuch, R., Lee, H.M., Schneider, B.C., Sauve, K.L., Law, C., Khan, B.K., Rotolo, J.A., Horiuchi, Y., Couto, D.E., Raz, A., et al. 2014. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating Methicillin-Resistant Staphylococcus aureus-induced murine bacteremia. J. Infect Dis. 209, 1469–1478.

    Article  CAS  PubMed  Google Scholar 

  • Swift, S., Seal, B., Garrish, J., Oakley, B., Hiett, K., Yeh, H., Woolsey, R., Schegg, K., Line, J., and Donovan, D. 2015. A thermophilic phage endolysin fusion to a Clostridium perfringens-Specific cell wall binding domain creates an Anti-Clostridium antimicrobial with improved thermostability. Viruses 7, 3019–3034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 3, 359–411.

    Google Scholar 

  • Walmagh, M., Boczkowska, B., Grymonprez, B., Briers, Y., Drulis-Kawa, Z., and Lavigne, R. 2013. Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl. Microbiol. Biotechnol. 97, 4369–4375.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjiang Sun or Liancheng Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Gu, J., Lv, M. et al. The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. J Microbiol. 55, 403–408 (2017). https://doi.org/10.1007/s12275-017-6431-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-017-6431-6

Keywords

Navigation