Skip to main content
Log in

The assessment of host and bacterial proteins in sputum from active pulmonary tuberculosis

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis. The protein composition of sputum may reflect the immune status of the lung. This study aimed to evaluate the protein profiles in spontaneous sputum samples from patients with active pulmonary TB. Sputum samples were collected from patients with pulmonary TB and healthy controls. Western blotting was used to analyze the amount of interleukin 10 (IL-10), interferon-gamma (IFN-γ), IL-25, IL-17, perforin-1, urease, albumin, transferrin, lactoferrin, adenosine deaminase (also known as adenosine aminohydrolase, or ADA), ADA-2, granzyme B, granulysin, and caspase-1 in sputum. Results of detection of IL-10, IFN-γ, perforin-1, urease, ADA2, and caspase-1, showed relatively high specificity in distinguishing patients with TB from healthy controls, although sensitivities varied from 13.3% to 66.1%. By defining a positive result as the detection of any two proteins in sputum samples, combined use of transferrin and urease as markers increased sensitivity to 73.2% and specificity to 71.1%. Furthermore, we observed that the concentration of transferrin was proportional to the number of acid-fast bacilli detected in sputum specimens. Detection of sputum transferrin and urease was highly associated with pulmonary TB infection. In addition, a high concentration of transferrin detected in sputum might correlate with active TB infection. This data on sputum proteins in patients with TB may aid in the development of biomarkers to assess the severity of pulmonary TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boelaert, J.R., Vandecasteele, S.J., Appelberg, R., and Gordeuk, V.R. 2007. The effect of the host’s iron status on tuberculosis. J. Infect. Dis. 195, 1745–1753.

    Article  CAS  PubMed  Google Scholar 

  • Boradia, V.M., Malhotra, H., Thakkar, J.S., Tillu, V.A., Vuppala, B., Patil, P., Sheokand, N., Sharma, P., Chauhan, A.S., Raje, M., et al. 2014. Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin. Nat. Commun. 5, 4730

    Article  CAS  PubMed  Google Scholar 

  • Chou, C.H., Huang, Y.T., Hsu, H.L., Lai, C.C., Liao, C.H., and Hsueh, P.R. 2009. Rapid identification of the Mycobacterium tuberculosis complex by an enzyme-linked immunosorbent assay. Int. J. Tuberc. Lung Dis. 13, 996–1001.

    PubMed  Google Scholar 

  • Cooper, A.M., Dalton, D.K., Stewart, T.A., Griffin, J.P., Russell, D.G., and Orme, I.M. 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178, 2243–2247.

    Article  CAS  PubMed  Google Scholar 

  • Dilmac, A., Ucoluk, G.O., Ugurman, F., Gozu, A., Akkalyoncu, B., Eryilmaz, T., and Samurkasoglu, B. 2002. The diagnostic value of adenosine deaminase activity in sputum in pulmonary tuberculosis. Respir. Med. 96, 632–634.

    Article  CAS  PubMed  Google Scholar 

  • Dimakou, K., Hillas, G., and Bakakos, P. 2009. Adenosine deaminase activity and its isoenzymes in the sputum of patients with pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 13, 744–748.

    CAS  PubMed  Google Scholar 

  • Forbes, B.A., Sahm, D.F., and Weissfeld, A.S. 2007. Bailey and Scott’s diagnostic microbiology. In Forbes, B.A., Sahm, D.F., and Weissfeld, A.S. (eds.) 12th ed, pp. 478–509. St. Louis, USA.

  • Fu, Y.R., Yi, Z.J., Guan, S.Z., Zhang, S.Y., and Li, M. 2012. Proteomic analysis of sputum in patients with active pulmonary tuberculosis. Clin. Microbiol. Infect. 18, 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  • Golub, J.E., Bur, S., Cronin, W.A., Gange, S., Baruch, N., Comstock, G.W., and Chaisson, R.E. 2006. Delayed tuberculosis diagnosis and tuberculosis transmission. Int. J. Tuberc. Lung Dis. 10, 24–30.

    CAS  PubMed  Google Scholar 

  • Horng, Y.T., Jeng, W.Y., Chen, Y.Y., Liu, C.H., Dou, H.Y., Lee, J.J., Chang, K.C., Chien, C.C., and Soo, P.C. 2015. Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin. Antimicrob. Agents Chemother. 59, 1542–1548.

    Article  PubMed  PubMed Central  Google Scholar 

  • John, S.H., Kenneth, J., and Gandhe, A.S. 2012. Host biomarkers of clinical relevance in tuberculosis: review of gene and protein expression studies. Biomarkers 17, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Konieczna, I., Zarnowiec, P., Kwinkowski, M., Kolesinska, B., Fraczyk, J., Kaminski, Z., and Kaca, W. 2012. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 13, 789–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küpeli, E., Karnak, D., Beder, S., Kayacan, O., and Tutkak, H. 2008. Diagnostic accuracy of cytokine levels (TNF-alpha, IL-2, and IFNgamma) in bronchoalveolar lavage fluid of smear-negative pulmonary tuberculosis patients. Respiration 75, 73–78.

    Article  PubMed  Google Scholar 

  • Lago, P.M., Boechat, N., Migueis, D.P., Almeida, A.S., Lazzarini, L.C., Saldanha, M.M., Kritski, A.L., Ho, J.L., and Lapa e Silva, J.R. 2012. Interleukin-10 and interferon-gamma patterns during tuberculosis treatment: possible association with recurrence. Int. J. Tuberc. Lung Dis. 16, 656–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Li, J., Tian, J., Zhu, B., Zhang, Y., Yang, K., Ling, Y., and Hu, Y. 2012. IL-17 and IFN-gamma production in peripheral blood following BCG vaccination and Mycobacterium tuberculosis infection in human. Eur. Rev. Med. Pharmacol. Sci. 16, 2029–2036.

    CAS  PubMed  Google Scholar 

  • Mindolli, P.B., Salmani, M.P., and Parandekar, P.K. 2013. Improved diagnosis of pulmonary tuberculosis using bleach microscopy method. J. Clin. Diagn. Res. 7, 1336–1338.

    PubMed  PubMed Central  Google Scholar 

  • Moon, H.W. and Hur, M. 2013. Interferon-gamma release assays for the diagnosis of latent tuberculosis infection: an updated review. Ann. Clin. Lab. Sci. 43, 221–229.

    CAS  PubMed  Google Scholar 

  • Murray, P.R. and Washington, J.A. 1975. Microscopic and baceriologic analysis of expectorated sputum. Mayo Clin. Proc. 50, 339–344.

    CAS  PubMed  Google Scholar 

  • Pitabut, N., Sakurada, S., Tanaka, T., Ridruechai, C., Tanuma, J., Aoki, T., Kantipong, P., Piyaworawong, S., Kobayashi, N., Dhepakson, P., et al. 2013. Potential function of granulysin, other related effector molecules and lymphocyte subsets in patients with TB and HIV/TB coinfection. Int. J. Med. Sci. 10, 1003–1014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro-Rodrigues, R., Resende Co, T., Johnson, J.L., Ribeiro, F., Palaci, M., Sa, R.T., Maciel, E.L., Pereira Lima, F.E., Dettoni, V., Toossi, Z., et al. 2002. Sputum cytokine levels in patients with pulmonary tuberculosis as early markers of mycobacterial clearance. Clin. Diagn. Lab. Immunol. 9, 818–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  • Sia, I.G. and Wieland, M.L. 2011. Current concepts in the management of tuberculosis. Mayo Clin. Proc. 86, 348–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soo, P.C., Horng, Y.T., Chang, K.C., Wang, J.Y., Hsueh, P.R., Chuang, C.Y., Lu, C.C., and Lai, H.C. 2009. A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Mol. Cell. Probes 23, 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Soo, P.C., Horng, Y.T., Chen, A.T., Yang, S.C., Chang, K.C., Lee, J.J., and Peng, W.P. 2015. Validation of nanodiamond-extracted CFP- 10 antigen as a biomarker in clinical isolates of Mycobacterium tuberculosis complex in broth culture media. Tuberculosis 95, 620–624.

    Article  CAS  PubMed  Google Scholar 

  • Soo, P.C., Horng, Y.T., Hsueh, P.R., Shen, B.J., Wang, J.Y., Tu, H.H., Wei, J.R., Hsieh, S.C., Huang, C.C., and Lai, H.C. 2006. Direct and simultaneous identification of Mycobacterium tuberculosis complex (MTBC) and Mycobacterium tuberculosis (MTB) by rapid multiplex nested PCR-ICT assay. J. Microbiol. Methods 66, 440–448.

    Article  CAS  PubMed  Google Scholar 

  • Soo, P.C., Kung, C.J., Horng, Y.T., Chang, K.C., Lee, J.J., and Peng, W.P. 2012. Detonation nanodiamonds for rapid detection of clinical isolates of Mycobacterium tuberculosis complex in broth culture media. Anal. Chem. 84, 7972–7978.

    Article  CAS  PubMed  Google Scholar 

  • Stenger, S. 2001. Cytolytic T cells in the immune response to Mycobacterium tuberculosis. Scand. J. Infect. Dis. 33, 483–487.

    Article  CAS  PubMed  Google Scholar 

  • Stites, S.W., Walters, B., O’Brien-Ladner, A.R., Bailey, K., and Wesselius, L.J. 1998. Increased iron and ferritin content of sputum from patients with cystic fibrosis or chronic bronchitis. Chest 114, 814–819.

    Article  CAS  PubMed  Google Scholar 

  • Veljkovic Vujaklija, D., Sucic, S., Gulic, T., Dominovic, M., and Rukavina, D. 2012. Cell death mechanisms at the maternal-fetal interface: insights into the role of granulysin. Clin. Dev. Immunol. 2012, 180272.

    Article  PubMed  Google Scholar 

  • Vogel, L., Schoonbrood, D., Geluk, F., Hoek, F., Bresser, P., Out, T., Jansen, H., Dankert, J., and van Alphen, L. 1997. Iron-binding proteins in sputum of chronic bronchitis patients with Haemophilus influenzae infections. Eur. Respir. J. 10, 2327–2333.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.Y., Kim, H., Kim, S., Kim, D.K., Cho, S.N., and Lee, H. 2015. Performance of a real-time PCR assay for the rapid identification of Mycobacterium species. J. Microbiol. 53, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization. 2015. Global tuberculosis report 2015. http://www.who.int/tb/publications/global_report/en/.

    Google Scholar 

  • Yu, F.L., Lee, J.C., Wang, M.S., Hsu, H.L., Chen, T.T., Cheng, C.L., Yang, Y.Y., Wang, G.C., and Yu, M.C. 2016. Evaluation of a modified direct agar proportion method for testing susceptibility of Mycobacterium tuberculosis from MGIT samples. J. Microbiol. Immunol. Infect. 49, 60–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Chi Soo.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

12275_2016_6201_MOESM1_ESM.pdf

Western blot analysis of IL-10, IFN-γ, IL-25, IL-17, perforin-1, albumin, lactoferrin, ADA, ADA2, granzyme B, granulysin and caspase-1 in sputum samples from five randomly selected patients with TB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, HC., Horng, YT., Yeh, PF. et al. The assessment of host and bacterial proteins in sputum from active pulmonary tuberculosis. J Microbiol. 54, 761–767 (2016). https://doi.org/10.1007/s12275-016-6201-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6201-x

Keywords

Navigation