Skip to main content
Log in

Potential for colonization of O111:H25 atypical enteropathogenic E. coli

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Using clonal phylogenetic methods, it has been demonstrated that O111:H25 atypical enteropathogenic E. coli (aEPEC) strains belong to distinct clones, suggesting the possibility that their ability to interact with different hosts and abiotic surfaces can vary from one clone to another. Accordingly, the ability of O111:H25 aEPEC strains derived from human, cat and dogs to adhere to epithelial cells has been investigated, along with their ability to interact with macrophages and to form biofilms on polystyrene, a polymer used to make biomedical devices. The results demonstrated that all the strains analyzed were able to adhere to, and to form pedestals on, epithelial cells, mechanisms used by E. coli to become strongly attached to the host. The strains also show a Localized-Adherence-Like (LAL) pattern of adhesion on HEp-2 cells, a behavior associated with acute infantile diarrhea. In addition, the O111:H25 aEPEC strains derived either from human or domestic animals were able to form long filaments, a phenomenon used by some bacteria to avoid phagocytosis. O111:H25 aEPEC strains were also encountered inside vacuoles, a characteristic described for several bacterial strains as a way of protecting themselves against the environment. They were also able to induce TNF-α release via two routes, one dependent on TLR-4 and the other dependent on binding of Type I fimbriae. These O111:H25 strains were also able to form biofilms on polystyrene. In summary the results suggest that, regardless of their source (i.e. linked to human origin or otherwise), O111:H25 aEPEC strains carry the potential to cause human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beloin, C., Roux, A., and Ghigo, J.M. 2008. Escherichia coli biofilms. Curr. Top. Microbiol. Immunol. 322, 249–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bian, Z., Brauner, A., Li, Y., and Normark, S. 2000. Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J. Inf. Dis. 181, 602–612.

    Article  CAS  Google Scholar 

  • Blomfield, I.C. 2001. The regulation of pap and type 1 fimbriation in Escherichia coli. Adv. Microb. Physiol. 45, 1–49.

    Article  CAS  PubMed  Google Scholar 

  • Bokranz, W., Wang, X., Tschäpe, H., and Römling, U. 2005. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 54, 1171–1182.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury, M.G. and Moreno, C. 1993. Effect of lipoarabinomannan and mycobacteria on tumor necrosis factor production by different populations of murine macrophages. Clin. Exp. Immunol. 94, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon, G.J. and Swanson, J.A. 1992. The macrophage capacity for phagocytosis. J. Cell. Sci. 101, 907–913.

    PubMed  Google Scholar 

  • Carvalho, V.M., Gyles, C.L., Ziebell, K., Ribeiro, M.A., Catão-Dias, J.L., Sinhorini, I.L., Otman, J., Keller, R., Trabulsi, L.R., and Pestana de Castro A.F. 2003. Characterization of monkey enteropathogenic Escherichia coli (EPEC) and human typical and atypical EPEC serotype isolates from neotropical nonhuman primates. J. Clin. Microbiol. 41, 1225–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castonguay, M.H., van der Schaaf, S., Koester, W., Krooneman, J., van der Meer, W., Harmsen, H., and Landini, P. 2006. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res. Microbiol. 157, 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Cravioto, A., Gross, R.J., Scotland, S.M., and Rowe, B. 1979. An adhesive factor found in strains of Escherichia coli belonging to the traditional infantile enteropathogenic serotypes. Curr. Microbiol. 3, 95–99.

    Article  Google Scholar 

  • Culler, H.F., Mota, C.M., Abe, C.M., Elias, W.P., Sircili, M.P., and Franzolin, M.R. 2014. Atypical enteropathogenic Escherichia coli strains form biofilm on abiotic surfaces regardless of their adherence pattern on cultured epithelial cells. BioMed Res. Int. 2014, 845147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, J., Reeves, A.Z., Klein, J.A., Twedt, D.J., Knodler, L.A., and Lesser, C.F. 2016. The type III secretion system apparatus determines the intracellular niche of bacterial pathogens. Proc. Natl. Acad. Sci. USA 113, 4794–4799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gally, D.L., Bogan, J.A., Eisenstein, B.I., and Blomfield, I.C. 1993. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J. Bacteriol. 175, 6186–6193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, I.R. and Owen, P. 1999. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. J. Bacteriol. 181, 2132–2141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandes, R.T., Elias, W.P., Vieira, M.A., and Gomes, T.A. 2009. An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol. Lett. 297, 137–149.

    Article  CAS  PubMed  Google Scholar 

  • Hernandes, R.T., Velsko, I., Sampaio, S.C., Elias, W.P., Robins-Browne, R.M., Gomes, T.A., and Girón, J.A. 2011. Fimbrial adhesins produced by atypical enteropathogenic Escherichia coli strains. Appl. Environ. Microbiol. 77, 8391–8399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justice, S.S., Hunstad, D.A., Cegelski, L., and Hultgren, S.J. 2008. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 6, 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Kjærgaard, K., Schembri, M.A., Ramos, C., Molin, S., and Klemm, P. 2000. Antigen 43 facilitates formation of multispecies biofilms. Environ. Microbiol. 2, 695–702.

    Article  PubMed  Google Scholar 

  • Knutton, S. 1995. Electron microscopical methods in adhesion. Methods Enzymol. 253, 145–158.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Mémet, S., Saban, R., Kong, X., Aprikian, P., Sokurenko, E., Sun, T.T., and Wu, X.R. 2015. Dual ligand/receptor interactions activate urothelial defenses against uropathogenic E. coli. Sci. Rep. 5, 16234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynnes, T., Prüss, B.M., and Samanta P. 2013. Acetate metabolism and Escherichia coli biofilm: new approaches to an old problem. FEMS Microbiol. Lett. 344, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Malaviya R., Gao, Z., Thankavel, K., van der Merwe, P.A., and Abraham, S.N. 1999. The mast cell tumor necrosis factor-α response to Fim-H-expressing Escherichia coli is mediated by the glycosylposphatidylinositol- anchored molecule CD48. Proc. Natl. Acad. Sci. USA 96, 8110–8115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malaviya, R., Ikeda, T., Ross, E., and Abraham, S.N. 1996. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80.

    Article  CAS  PubMed  Google Scholar 

  • Mallick, E.M., Garber, J.J., Vanguri, V.K., Balasubramanian, S., Blood, T., Clark, S., Vingadassalom, D., Louissaint, C., McCormick, B., Snapper, S.B., et al. 2014. The ability of an attaching and effacing pathogen to trigger localized actin assembly contributes to virulence by promoting mucosal attachment. Cell Microbiol. 16, 1405–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer, J.J., Brown, T.P., Steffens, W.L., and Thayer, S.G. 1998. The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian Dis. 42, 106–118.

    Article  CAS  PubMed  Google Scholar 

  • Melo, L.F. and Bott, T.R. 1997. Biofouling in water systems. Exp. Therm. Fluid Sci. 14, 375–381.

    Article  CAS  Google Scholar 

  • Morato, E.P., Leomil, L., Beutin, L., Krause, G., Moura, R.A., and Pestana de Castro, A.F. 2009. Domestic cats constitute a natural reservoir of human enteropathogenic Escherichia coli types. Zoonoses Public Health 56, 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Moura, R.A., Sircili, M.P., Leomil, L., Matté, M.H., Trabulsi, L.R., Elias, W.P., Irino, K., and Pestana de Castro, A.F. 2009. Clonal relationship among atypical enteropathogenic Escherichia coli strains isolated from different animal species and humans. Appl. Environ. Microbiol. 75, 7399–7408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento, H.H., Silva, L.E., Souza, R.T., Silva, N.P., and Scaletsky, I.C. 2014. Phenotypic and genotypic characteristics associated with biofilm formation in clinical isolates of atypical enteropathogenic Escherichia coli (aEPEC) strains. BMC Microbiol. 14, 184

    Article  PubMed  PubMed Central  Google Scholar 

  • Nataro, J.P., Baldini, M.M., Kaper, J.B., Black, R.E., Bravo, N., and Levine, M.M. 1985. Detection of an adherence factor of enteropathogenic Escherichia coli with a DNA probe. J. Infect. Dis. 152, 560–565.

    Article  CAS  PubMed  Google Scholar 

  • Ofek, I. and Beachey, E.H. 1978. Mannose binding and epithelial cell adherence of Escherichia coli. Infect. Immun. 22, 247–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt, L.A. and Kolter, R. 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 30, 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Puño-Sarmiento, J., Medeiros, L., Chiconi, C., Martins, F., Pelayo, J., Rocha, S., Blanco, J., Blanco, M., Zanitto, M., Kobayashi, R., et al. 2013. Detection of diarrheagenic Escherichia coli strains isolated from dogs and cats in Brazil. Vet. Microbiol. 166, 676–680.

    Article  PubMed  Google Scholar 

  • Rodrigues, J., Thomazini, C.M., Lopes, C.A., and Dantas, L.O. 2004. Concurrent infection in a dog and colonization in a child with a human enteropathogenic Escherichia coli clone. J. Clin. Microbiol. 42, 1388–1389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Römling, U., Bokranz, W., Rabsch, W., Zogaj, X., Nimtz, M., and Tschäpe, H. 2003. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int. J. Med. Microbiol. 293, 273–285.

    Article  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, New York, USA.

    Google Scholar 

  • Sanchez-Villamil, J. and Navarro-Garcia, F. 2015. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol. 10, 1009–1033.

    Article  CAS  PubMed  Google Scholar 

  • Scaletsky, I.C., Fabbricotti, S.H., Silva, S.O., Morais, M.B., and Fagundes-Neto, U. 2002. HEp-2-adherent Escherichia coli strains associated with acute infantile diarrhea, São Paulo, Brazil. Emerg. Infect. Dis. 8, 855–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheikh, J., Hicks, S., Dall’Agnol, M., Phillips, A.D., and Nataro, J.P. 2001. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol. Microbiol. 41, 983–997.

    Article  CAS  PubMed  Google Scholar 

  • Sivick, K.E. and Mobley, H.L. 2010. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect. Immun. 78, 568–585.

    Article  CAS  PubMed  Google Scholar 

  • Trabulsi, L.R., Keller, R., and Tardelli Gomes, T.A. 2002. Typical and atypical enterophatogenic Escherichia coli. Emerg. Infect. Dis. 8, 508–513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trividi, A., Mavi, P.S., Bhatt, D., and Kumar, A. 2016. Thiol reductive stress induce cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat. Commun. 7, 11392

    Article  Google Scholar 

  • Wardlaw, T., Salama, P., Brocklehurst, C., Chopra, M., and Mason, E. 2010. Diarrhoea: why children are still dying and what can be done. Lancet 375, 870–872.

    Article  PubMed  Google Scholar 

  • Weiss-Muszkat, M., Shakh, D., Zhou, Y., Pinto, R., Belausov, E., Chapman, M.R., and Sela, S. 2010. Biofilm formation and multicellular behavior in Escherichia coli O55:H7, an atypical enteropathogenic strain. Appl. Environ. Microbiol. 76, 1545–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White-Ziegler, C.A., Um, S., Pérez, N.M., Berns, A.L., Malhowski, A.J., and Young, S. 2008. Low temperature (23°C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154, 148–166.

    Article  CAS  PubMed  Google Scholar 

  • Zamboni, D.S. and Rabinovitch, M. 2003. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect. Immun. 71, 1225–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta O. Domingos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, M.O., Melo, K.C.M., Neves, I.V. et al. Potential for colonization of O111:H25 atypical enteropathogenic E. coli . J Microbiol. 54, 745–752 (2016). https://doi.org/10.1007/s12275-016-6015-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-6015-x

Keywords

Navigation