Skip to main content
Log in

Role of the extracytoplasmic function sigma factor CarQ in oxidative response of Bradyrhizobium japonicum

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

As a nitrogen-fixing bacterium, Bradyrhizobium japonicum can establish a symbiotic relationship with the soybean plant (Glycine max). To be a successful symbiont, B. japonicum must deal with plant defense responses, such as an oxidative burst. Our previous functional genomics study showed that carQ (bll1028) encoding extracytoplasmic function (ECF) sigma factor was highly expressed (107.8-fold induction) under oxidative stress. Little is known about the underlying mechanisms of how CarQ responds to oxidative stress. In this study, a carQ knock-out mutant was constructed using site-specific mutagenesis to identify the role of carQ in the oxidative response of B. japonicum. The carQ mutant showed a longer generation time than the wild type and exhibited significantly decreased survival at 10 mM H2O2 for 10 min of exposure. Surprisingly, there was no significant difference in expression of oxidative stress-responsive genes such as katG and sod between the wild type and carQ mutant. The mutant also showed a significant increase in susceptibility to H2O2 compared to the wild type in the zone inhibition assay. Nodulation phenotypes of the carQ mutant were distinguishable compared to those of the wild type, including lower numbers of nodules, decreased nodule dry weight, decreased plant dry weight, and a lower nitrogen fixation capability. Moreover, desiccation of mutant cells also resulted in significantly lower percent of survival in both early (after 4 h) and late (after 24 h) desiccation periods. Taken together, this information will provide an insight into the role of the ECF sigma factor in B. japonicum to deal with a plant-derived oxidative burst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Martinez, C.E., Lourenco, R.F., Baldini, R.L., Laub, M.T., and Gomes, S.L. 2007. The ECF sigma factor sigma(T) is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol. Microbiol. 66, 1240–1255.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Aslam, S.N., Newman, M.A., Erbs, G., Morrissey, K.L., Chinchilla, D., Boller, T., Jensen, T.T., De Castro, C., Ierano, T., Molinaro, A., et al. 2008. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. Curr. Biol. 18, 1078–1083.

    Article  CAS  PubMed  Google Scholar 

  • Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bittner, M., Butow, R., DeRisi, J., Diehn, M., Eberwine, J., Epstein, C.B., Glynne, R., Grimmond, S., Ideker, T., Kacharmina, J.E., et al. 2003. Expression analysis of RNA. pp. 101–288. In Bowtell, D. and Sambrook, J. (eds.), DNA Microarrays: A Molecular Cloning Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

  • Browning, D.F., Whitworth, D.E., and Hodgson, D.A. 2003. Lightinduced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 48, 237–251.

    Article  CAS  PubMed  Google Scholar 

  • Bulgakov, V.P., Gorpenchenko, T.Y., Veremeichik, G.N., Shkryl, Y.N., Tchernoded, G.K., Bulgakov, D.V., Aminin, D.L., and Zhuravlev, Y.N. 2012. The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiol. 158, 1371–1381.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang, W.S., Franck, W.L., Cytryn, E., Jeong, S., Joshi, T., Emerich, D.W., Sadowsky, M.J., Xu, D., and Stacey, G. 2007. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Mol. Plant-Microbe Interact. 20, 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Chang, W.S., Li, X., and Halverson, L.J. 2009. Influence of water limitation on endogenous oxidative stress and cell death within unsaturated Pseudomonas putida biofilms. Environ. Microbiol. 11, 1482–1492.

    Article  PubMed  Google Scholar 

  • Cytryn, E.J., Sangurdekar, D.P., Streeter, J.G., Franck, W.L., Chang, W.S., Stacey, G., Emerich, D.W., Joshi, T., Xu, D., and Sadowsky, M.J. 2007. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 189, 6751–6762.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datsenko, K.A. and Wanner, B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Day, D.A., Poole, P.S., Tyerman, S.D., and Rosendahl, L. 2001. Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol. Life Sci. 58, 61–71.

    Article  CAS  PubMed  Google Scholar 

  • Donati, A.J., Jeon, J.M., Sangurdekar, D., So, J.S., and Chang, W.S. 2011. Genome-wide transcriptional and physiological responses of Bradyrhizobium japonicum to paraquat-mediated oxidative stress. Appl. Environ. Microbiol. 77, 3633–3643.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, P.J., Gallesi, D., Mathieu, C., Hernandez, M.J., de Felipe, M., Halliwell, B., and Puppo, A. 1999. Oxidative stress occurs during soybean nodule senescence. Planta 208, 73–79.

    Article  CAS  Google Scholar 

  • Figurski, D.H. and Helinski, D.R. 1979. Replication of an origincontaining derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76, 1648–1652.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gourion, B., Sulser, S., Frunzke, J., Francez-Charlot, A., Stiefel, P., Pessi, G., Vorholt, J.A., and Fischer, H.M. 2009. The PhyR-sigma( EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Mol. Microbiol. 73, 291–305.

    Article  CAS  PubMed  Google Scholar 

  • Gruber, T.M. and Gross, C.A. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466.

    Article  CAS  PubMed  Google Scholar 

  • Halverson, L.J. and Stacey, G. 1986. Effect of lectin on nodulation by wild-type Bradyrhizobium japonicum and a nodulation-defective mutant. Appl. Environ. Microbiol. 51, 753–760.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jamet, A., Sigaud, S., Van de Sype, G., Puppo, A., and Herouart, D. 2003. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol. Plant-Microbe Interact. 16, 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, J.M., Lee, H.I., Donati, A.J., So, J.S., Emerich, D.W., and Chang, W.S. 2011. Whole-genome expression profiling of Bradyrhizobium japonicum in response to hydrogen peroxide. Mol. Plant-Microbe Interact. 24, 1472–1481.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, D.C. 1982. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32, 136–139.

    Article  Google Scholar 

  • Klotz, L.O. 2002. Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen. Biol. Chem. 383, 443–456.

    Article  CAS  PubMed  Google Scholar 

  • Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M. 2nd, and Peterson, K.M. 1994. pBBR1MCS: a broad-host-range cloning vector. BioTechniques 16, 800–802.

    CAS  PubMed  Google Scholar 

  • Kuzma, M.M., Hunt, S., and Layzell, D.B. 1993. Role of oxygen in the limitation and inhibition of nitrogenase activity and respiration rate in individual soybean nodules. Plant Physiol. 101, 161–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, H.I., Lee, J.H., Park, K.H., Sangurdekar, D., and Chang, W.S. 2012. Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile. Appl. Environ. Microbiol. 78, 2896–2903.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leong, S.A., Ditta, G.S., and Helinski, D.R. 1982. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J. Biol. Chem. 257, 8724–8730.

    CAS  PubMed  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y., Cao, Y., Tanaka, K., Thibivilliers, S., Wan, J., Choi, J., Kang, C., Qiu, J., and Stacey, G. 2013. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341, 1384–1387.

    Article  CAS  PubMed  Google Scholar 

  • Loprasert, S., Vattanaviboon, P., Praituan, W., Chamnongpol, S., and Mongkolsuk, S. 1996. Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase in Xanthomonas-a review. Gene 179, 33–37.

    Article  CAS  PubMed  Google Scholar 

  • Masloboeva, N., Reutimann, L., Stiefel, P., Follador, R., Leimer, N., Hennecke, H., Mesa, S., and Fischer, H.M. 2012. Reactive oxygen species-inducible ECF sigma factors of Bradyrhizobium japonicum. PLoS One 7, e43421.

  • Martinez-Salazar, J.M., Salazar, E., Encarnacion, S., Ramirez-Romero, M.A., and Rivera, J. 2009. Role of the extracytoplasmic function sigma factor RpoE4 in oxidative and osmotic stress responses in Rhizobium etli. J. Bacteriol. 191, 4122–4132.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nuss, A.M., Glaeser, J., and Klug, G. 2009. RpoH(II) activates oxidative-stress defense systems and is controlled by RpoE in the singlet oxygen-dependent response in Rhodobacter sphaeroides. J. Bacteriol. 191, 220–230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 2002–2007.

    Article  Google Scholar 

  • Quandt, J. and Hynes, M.F. 1993. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky, M.J., Tully, R.E., Cregan, P.B., and Keyser, H.H. 1987. Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. Appl. Environ. Microbiol. 53, 2624–2630.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos, R., Herouart, D., Sigaud, S., Touati, D., and Puppo, A. 2001. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol. Plant-Microbe Interact. 14, 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Skorupska, A., Janczarek, M., Marczak, M., Mazur, A., and Krol, J. 2006. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb. Cell Fact. 5, 7.

  • Soto, M.J., Sanjuan, J., and Olivares, J. 2006. Rhizobia and plantpathogenic bacteria: common infection weapons. Microbiology 152, 3167–3174.

    Article  CAS  PubMed  Google Scholar 

  • Stockwell, S.B., Reutimann, L., and Guerinot, M.L. 2011. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean. Mol. Plant-Microbe Interact. 25, 119–128.

    Article  Google Scholar 

  • Vriezen, J.A., de Bruijn, F.J., and Nusslein, K. 2007. Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microbiol. 73, 3451–3459.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zahran, H.H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63, 968–989.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Suk Chang.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaweethawakorn, A., Parks, D., So, JS. et al. Role of the extracytoplasmic function sigma factor CarQ in oxidative response of Bradyrhizobium japonicum . J Microbiol. 53, 526–534 (2015). https://doi.org/10.1007/s12275-015-5308-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5308-9

Keywords

Navigation