Skip to main content
Log in

Description of a novel pectin-degrading bacterial species Prevotella pectinovora sp. nov., based on its phenotypic and genomic traits

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Five strictly anaerobic Gram-negative bacterial strains, P4-65, P4-76T, P5-60, P5-119, and P5-125, presumably belonging to the genus Prevotella were isolated from pig fecal samples. Strains were tested for various phenotypic traits and nearcomplete genome sequences were obtained and analyzed. Phylogenetic analysis based on 16S rRNA gene sequences and multilocus sequence analysis based on five conserved genes confirmed that the strains belong to the genus Prevotella, revealing that they represent a novel and discrete lineage distinct from other known species of this genus. The size of the genome of the isolated strains is 3–3.3 Mbp, and the DNA G+C content is 47.5–48.1 mol%. The isolates are strictly anaerobic, rod-shaped with rounded ends, non-motile and non-spore-forming. The main fermentation products are succinate and acetate, with minor concentrations of isovalerate, propionate and isobutyrate. Hydrogen is also produced. Major cellular fatty acids consist of anteiso-C15:0 and iso-C15:0, and a number of additional acids are present in lower concentrations. A substantial portion of genes involved in carbohydrate utilization is devoted to pectin degradation and utilization, while those supporting growth on xylan in ruminal Prevotella could not have been revealed. On the basis of the presented results, a novel species, Prevotella pectinovora sp. nov. is proposed. The type strain is P4-76T (=DSM 29996T =ZIM B1020T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alauzet, C., Marchandin, H., and Lozniewski, A. 2010. New insights into Prevotella diversity and medical microbiology. Future Microbiol. 5, 1695–1718.

    Article  PubMed  Google Scholar 

  • Andrews, S., Lindenbaum, P., Howard, B., and Ewels, P. 2011–2014. FastQC high throughput sequence QC report v. 0.11.2. Available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidmen, J.G., Smith, J.A., and Struhl, K. 1992. Current protocols in molecular biology, U2.4.1–U2.4.2, Vol. 1. John Wiley & Sons, New York, USA.

  • Avguštin, G., Wallace, R.J., and Flint, H.J. 1997. Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. Int. J. Syst. Bacteriol. 47, 284–288.

    Article  PubMed  Google Scholar 

  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bryant, M.P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25, 1324–1328.

    CAS  PubMed  Google Scholar 

  • De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107, 14691–14696.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dodd, D., Mackie, R.I., and Cann, I.K.O. 2011. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol. Microbiol. 79, 292–304.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, H., Shibata, K., Sakamoto, M., Tomita, S., and Benno, Y. 2007. Prevotella copri sp. nov. and Prevotella stercorea sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 57, 941–946.

    Article  CAS  PubMed  Google Scholar 

  • Holdeman, L.V., Cato, E.P., and Moore, W.E.C. 1977. Anaerobe Laboratory Manual, 4th ed. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.

    Google Scholar 

  • Kim, H.B., Borewicz, K., White, B.A., Singer, R.S., Sreevatsan, S., Tu, Z.J., and Isaacson, R.E. 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 153, 124–133.

    Article  PubMed  Google Scholar 

  • Kuykendall, L.D., Roy, M.A., O'Neill, J.J., and Devine, T.E. 1988. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum. Int. J. Syst. Bacteriol. 38, 358–361.

    Article  CAS  Google Scholar 

  • Lagesen, K., Hallin, P., Rødland, E.A., Stærfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamendella, R., Santo Domingo, J.W., Ghosh, S., Martinson, J., and Oerther, D.B. 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11, 103–119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–148. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acids Techniques in Bacterial Systematics. John Wiley & Sons, Chichester, UK.

  • Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., and Sayler, G. 2006. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl. Environ. Microbiol. 72, 4214–4224.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leser, T.D., Amenuvor, J.Z., Jensen, T.K., Lindecrona, R.H., Boye, M., and Møller, K. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68, 673–690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Logan, N.A. and De Vos, P. 2009. Genus Bacillus Cohn 1872, pp. 21–128. In De Vos, P., Garrity, G.M., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.R., Schleifer, K.H., and Whitman, W.B. (eds.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., Vol. 3. Springer, New York, USA.

    Google Scholar 

  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495.

  • Magoc, T. and Salzberg, S.L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, L.T. 1982. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J. Clin. Microbiol. 16, 584–586.

    CAS  PubMed Central  PubMed  Google Scholar 

  • NCBI Resource Coordinators. 2015. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 43, D6–D17.

  • Pajarillo, E.A.B., Chae, J.P., Balolong, M.P., Kim, H.B., Seo, K.S., and Kang, D.K. 2014. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J. Microbiol. 52, 646–651.

    Article  PubMed  Google Scholar 

  • Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, I.M., Allison, M.J., and Bucklin, J.A. 1981. Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol. 41, 950–955.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, I.M., Whipp, S.C., Bucklin, J.A., and Allison, M.J. 1984. Characterization of predominant bacteria from the colons of normal and dysenteric pigs. Appl. Environ. Microbiol. 48, 964–969.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto, M. and Ohkuma, M. 2011. Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology 157, 3388–3397.

    Article  PubMed  Google Scholar 

  • Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.

    Article  CAS  PubMed  Google Scholar 

  • Siefring, S., Varma, M., Atikovic, E., Wymer, L., and Haugland, R.A. 2008. Improved real-time PCR assays for the detection of fecal indicator bacteria in surface waters with different instrument and reagent systems. J. Water Health 6, 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Stevenson, D.M. and Weimer, P.J. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Tatusova, T., Ciufo, S., Fedorov, B., O'Neill, K., and Tolstoy, I. 2014. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 42, D553–D559.

  • Van Gylswyk, N.O. 1990. Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol. Ecol. 73, 243–254.

    Article  Google Scholar 

  • Weisburg, W.G., Barms, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westram, R., Bader, K., Pruesse, E., Kumar, Y., Meier, H., Glöckner, F.O., and Ludwig, W. 2011. ARB: a software environment for sequence data, pp. 399–406. In de Bruijn, F.J. (ed.), Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.

  • Wood, J., Scott, K.P., Avguštin, G., Newbold, C.J., and Flint, H.J. 1998. Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences. Appl. Environ. Microbiol. 64, 3683–3689.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yarza, P., Richter, M., Peplies, J., Euzeby, J., Amann, R., Schleifer, K.H., Ludwig, W., Glöckner, F.O., and Rosselló-Móra, R. 2008. The All-Species Living Tree project: A 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31, 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorazd Avguštin.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nograšek, B., Accetto, T., Fanedl, L. et al. Description of a novel pectin-degrading bacterial species Prevotella pectinovora sp. nov., based on its phenotypic and genomic traits. J Microbiol. 53, 503–510 (2015). https://doi.org/10.1007/s12275-015-5142-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-5142-0

Keywords

Navigation