Skip to main content
Log in

Modern and simple construction of plasmid: Saving time and cost

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Construction of plasmids has been occupying a significant fraction of laboratory work in most fields of experimental biology. Tremendous effort was made to improve the traditional method for constructing plasmids, in which DNA fragments digested with restriction enzymes were ligated. However, the traditional method remained to be a standard protocol more than 40 years. At last, several recent inventions are rapidly and completely replacing the traditional method, because they are far quicker with less cost, and requiring less material. We here introduce three such methods that cover up most of the cases. Moreover, they are complementary with each other. Our lab protocols are provided for “no strain, no pain” construction of plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., and Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008.

    Article  PubMed  Google Scholar 

  • Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., and Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  • Chung C.T., Niemela S.L., and Miller R.H. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86, 2172–2175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Datsenko K.A. and Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis H.M., Yu D., DiTizio T., and Court D.L. 2001. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esvelt K.M. and Wang H.H. 2013. Genome-scale engineering for systems and synthetic biology. Mol. Syst. Biol. 9, 6–1.

    Google Scholar 

  • Garneau J.E., Dupuis M.È., Villion M., Romero D.A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A.H., and Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas G., Barrangou R., Horvath P., and Siksnys V. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–86.

    Article  Google Scholar 

  • Gibson D.G., Benders G.A., Andrews-Pfannkoch C., Denisova E.A., Baden-Tillson H., Zaveri J., Stockwell T.B., Brownley A., Thomas D.W., Algire M.A., and et al. 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  • Hockemeyer D., Wang H., Kiani S., Lai C.S., Gao Q., Cassady J.P., Cost G.J., Zhang L., Santiago Y., Miller J.C., and et al. 2011. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol. 29, 731–734.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu S., Fu J., Huang F., Ding X., Stewart A.F., Xia L., and Zhang Y. 2014. Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system. Appl. Microbiol. Biotechnol. 98, 2165–2172.

    Article  CAS  PubMed  Google Scholar 

  • Isaacs F.J., Carr P.A., Wang H.H., Lajoie M.J., Sterling B., Kraal L., Tolonen A.C., Gianoulis T.A., Goodman D.B., Reppas N.B., and et al. 2011. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S.K.S. and Stahl F.W.F. 1989. Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda. Genetics 123, 249–253.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller J.C., Tan S., Qiao G., Barlow K.A., Wang J., Xia D.F., Meng X., Paschon D.E., Leung E., Hinkley S.J., and et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Moerschell R.P., Tsunasawa S., and Sherman F. 1988. Transformation of yeast with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 85, 524–528.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mullis K.B. 1991. The polymerase chain reaction in an anemic mode: how to avoid cold oligodeoxyribonuclear fusion. PCR Methods Appl. 1, 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Murphy K.C. 1991. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J. Bacteriol. 173, 5808–5821.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy K.C. 1998. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muyrers J.P.J., Zhang Y.Y., Testa G.G., and Stewart A.F.A. 1999. Rapid modification of bacterial artificial chromosomes by ETrecombination. Nucleic Acids Res. 27, 1555–1557.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • New England BioLabs Gibson Assembly® Protocol (E5510). https://www.neb.com/protocols/2012/12/11/gibson-assembly-protocol-e5510?device=pdf.

  • Orr-Weaver T.L., Szostak J.W., and Rothstein R.J. 1983. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 101, 228–245.

    Article  CAS  PubMed  Google Scholar 

  • Rashtchian A. 1995. Novel methods for cloning and engineering genes using the polymerase chain reaction. Curr. Opin. Biotechnol. 6, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Ryu Y.S., Biswas R.K., Shin K., Parisutham V., Kim S.M., and Lee S.K. 2014. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering. PLoS ONE 9, e942–6.

    Google Scholar 

  • Sambrook J. and Russell D.W. 2006. The Inoue method for preparation and transformation of competent E. coli: “ultra-competent” cells. CSH Protoc. 2006, 1–6.

    Google Scholar 

  • Seidman C.E., Struhl K., Sheen J., and Jessen T. 2001. Introduction of plasmid DNA into cells. Current Protocols in Molecular Biology, John Wiley & Sons, Inc., Hoboken, NJ, USA.

    Google Scholar 

  • TAKARA Bio. 2007. PrimeStarMax mutagenesis kit 1–3.

    Google Scholar 

  • Thomason L.C., Sawitzke J.A., Li X., Costantino N., and Court D.L. 2014. Recombineering: genetic engineering in bacteria using homologous recombination. Curr. Protoc. Mol. Biol. 106, 1.16.1–1.16.39.

    Article  Google Scholar 

  • Ting J.T. and Feng G. 2014. Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond. Front Behav. Neurosci. 8, 1–1.

    Article  Google Scholar 

  • Wang H.H., Isaacs F.J., Carr P.A., Sun Z.Z., Xu G., Forest C.R., and Church G.M. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898.

    Article  CAS  PubMed  Google Scholar 

  • Yon J. and Fried M. 1989. Precise gene fusion by PCR. Nucleic Acids Res. 17, 48–5.

    Article  Google Scholar 

  • Yu D., Ellis H.M., Lee E.C., Jenkins N.A., Copeland N.G., and Court D.L. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y.Y., Buchholz F.F., Muyrers J.P.J., and Stewart A.F.A. 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y., Werling U., and Edelmann W. 2012. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res. 40, e55–e55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng L. 2004. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115–e115.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuo Shimamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, H., Shimamoto, N. Modern and simple construction of plasmid: Saving time and cost. J Microbiol. 52, 891–897 (2014). https://doi.org/10.1007/s12275-014-4501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4501-6

Keywords

Navigation