Skip to main content
Log in

Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study examined the fecal bacterial diversity of 15-weekold pigs from three purebred lines: Duroc, Landrace, and Yorkshire. Taxon-dependent and -independent analyses were performed to evaluate differences in the fecal bacterial communities and to identify bacterial genera that can be used to discriminate breeds, following high-throughput pyrosequencing of 16S rRNA genes. Among the breeds evaluated, Landrace had the most diverse bacterial community composition. Prevotella, Blautia, Oscillibacter, and Clostridium were detected in all samples regardless of breed. On the other hand, Catenibacterium, Blautia, Dialister, and Sphaerochaeta were differentially detected among breeds, as demonstrated by the canonical loading plot. The discriminant analysis of principal components plot also showed clear separation of the three purebred pig lines, with a certain degree of similarity between Landrace and Yorkshire pigs and a distinct separation between Duroc pigs and the other two breeds. Other factors not related to breed, such as season or time of sampling and pen effects, may contribute to shaping the gut microbiota of pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brodziak, F., Meharg, C., Blaut, M., and Loh, G. 2013. Differences in mucosal gene expression in the colon of two inbred mouse strains after colonization with commensal gut bacteria. PLoS ONE 8, e72317.

    Article  Google Scholar 

  • Campbell, J.H., Foster, C.M., Vishnivetskaya, T., Campbell, A.G., Yang, Z.K., Wymore, A., Palumbo, V., Chesler, E.J., and Podar, M. 2012. Host genetic and environmental effects on mouse intestinal microbiota. ISME J. 6, 2033–2044.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chmielowiec-Korzeniowska, A., Tymczyna, L., and Babicz, M. 2012. Assessment of selected parameters of biochemistry, hematology, immunology and production of pigs fattened in different seasons. Archiv. Tierzucht. 5, 469–479.

    Google Scholar 

  • Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259–2261.

    Article  CAS  PubMed  Google Scholar 

  • de Sevilla, X.F., Fàbrega, E., Tibau, J., and Casellas, J. 2008. Effect of leg conformation on survivability of Duroc, Landrace, and Large White sows. J. Anim. Sci. 86, 2392–2400.

    Article  PubMed  Google Scholar 

  • Dowd, S.E., Sun, Y., Wolcott, R.D., Domingo, A., and Carroll, J.A. 2008. Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathog. Dis. 5, 459–472.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G.R. and Roberfroid, M.B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412.

    CAS  PubMed  Google Scholar 

  • Guixin, Q., Verstegen, M.W.A., and Bosch, M.W. 1995. Variation of digestive capacity between genetically different pig populations: a review. J. Anim. Physiol. Anim. Nutr. 73, 233–242.

    Article  Google Scholar 

  • Hildebrand, F., Nguyen, T., Brinkman, B., Yunta, R.G., Cauwe, B., Vandenabeele, P., Liston, A., and Raes, J. 2013. Inflammationassociated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 14, R4.

    Article  Google Scholar 

  • Ibáñez-Escriche, N., Reixach, J., Lleonart, N., and Noguera, J.L. 2011. Genetic evaluation combining purebred and crossbred data in a pig breeding scheme. J. Anim. Sci. 89, 3881–3889.

    Article  PubMed  Google Scholar 

  • Jeon, Y.S., Chun, J., and Kim, B.S. 2013. Identification of household bacterial community and analysis of species shared with human microbiome. Curr. Microbiol. 67, 557–563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong, J.Y., Park, H.D., Lee, K.H., Weon, H.Y., and Ka, J.O. 2011. Microbial community analysis and identification of alternative host-specific fecal indicators in fecal and river water samples using pyrosequencing. J. Microbiol. 49, 585–594.

    Article  PubMed  Google Scholar 

  • Jombart, T. and Ahmed, I. 2011. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. doi:10.1093/bioinformatics/btr5-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung, J.Y., Lee, S.H., Kim, J.M., Park, M.S., Bae, J.W., Hahn, Y., Madsen, E.L., and Jeon, C.O. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77, 2264–2274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kerr, K.R., Forster, G., Dowd, S.E., Ryan, E.P., and Swanson, K.S. 2013. Effects of dietary cooked navy bean on the fecal microbiome of healthy companion dogs. PLoS ONE 8, e74998. doi: 10.1371/journal.pone.0074-98.

    Article  Google Scholar 

  • Kim, H.B., Borewicz, K., White, B.A., Singer, R.S., Sreevatsan, S., Tu, Z.J., and Isaacson, R.E. 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 153, 124–133.

    Article  PubMed  Google Scholar 

  • Kim, H.B., Borewicz, K., White, B.A., Singer, R.S., Sreevatsan, S., Tu, Z.J., and Isaacson, R.E. 2012a. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc. Natl. Acad. Sci. USA 109, 15485–15490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., Won, S., and Chun, J. 2012b. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kim, O.S., Chae, N., Lim, H.S., Cho, A., and Kim, J.H.. 2012c. Bacterial diversity in ornithogenic soils compared to mineral soils on King George Island, Antarctica. J. Microbiol. 50, 1081–1085.

    Article  CAS  Google Scholar 

  • Kim, T.H., Kim, K.S., Choi, B.H., Yoon, D.H., Jang, G.W., Lee, K.T., Chung, H.Y., Lee, H.Y., Park, H.S., and Lee, J.W. 2005. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83, 2255–2263.

    CAS  PubMed  Google Scholar 

  • Lamendella, R., Li, K.C., Oerther, D., and Santo Domingo, J.W. 2013. Molecular diversity of Bacteroidales in fecal and environmental samples and swine-associated subpopulations. Appl. Environ. Microbiol. 79, 816–824.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ley, R.E., Peterson, D.A., and Gordon, J.I. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848.

    Article  CAS  PubMed  Google Scholar 

  • Loh, G., Brodziak, F., and Blaut, M. 2008. The Toll-like receptors TLR2 and TLR4 do not affect the intestinal microbiota composition in mice. Environ. Microbiol. 10, 709–715.

    Article  CAS  PubMed  Google Scholar 

  • Lu, X.M., Lu, P.Z., and Zhang, H. 2013. Bacterial communities in manures of piglets and adult pigs bred with different feeds revealed by 16S rDNA 454 pyrosequencing. Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5211-4.

    Google Scholar 

  • Malmuthuge, N., Griebel, P.J., and Guan, L. 2014. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microbiol. 80, 2021–2028.

    Article  CAS  PubMed  Google Scholar 

  • McKnite, A.M., Perez-Munoz, M.E., Lu, L., Williams, E.G., Brewer, S., Andreux, P.A., Bastiaansen, J.W., Wang, X., Kachman, S.D., Auwerx, J., and et al. 2012. Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS ONE 7, e39171.

    Article  Google Scholar 

  • Na, H., Kim, O.K., Yoon, S.H., Kim, Y., and Chun, J. 2011. Comparative approach to capture bacterial diversity of coastal waters. J. Microbiol. 49, 729–740.

    Article  PubMed  Google Scholar 

  • O’Hara, A.M. and Shanahan, F. 2006. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rehman, A., Sina, C., Gavrilova, O., Häsler, R., Ott, S., Baines, J.F., Schreiber, S., and Rosenstiel, P. 2011. Nod2 is essential for temporal development of intestinal microbial communities. Gut 60, 1354–1362.

    Article  CAS  PubMed  Google Scholar 

  • Shan, T., Reng, Y., Liu, Y., Zhu, L., and Wang, Y. 2010. Breed difference and regulation of the porcine Sirtuin 1 by insulin. J. Anim. Sci. 88, 3909–3917.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd, M.L., Swecker, W.S., Jensen, R.V., and Ponder, M.A. 2012. Characterization of the fecal bacteria communities of forage- fed horses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS Microbiol. Lett. 326, 62–68.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y.G., Shim, S.G., Kim, K.M., Lee, D.H., Kim, D.S., Choi, S.H., Song, J.Y., Kang, H.L., Baik, S.C., Lee, W.K., and et al. 2014. Profiling of the bacteria responsible for pyogenic liver abscess by 16S rRNA gene pyrosequencing. J. Microbiol. 52, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Strong, T., Dowd, S., Gutierrez, A.F., and Coffman, J. 2013. Amplicon pyrosequencing of wild duck eubacterial microbiome from a fecal sample reveals numerous species linked to human and animal diseases [v1; ref status: approved with reservations 1, not approved 1, http://f1000r.es/1yy] F1000Research 2013, 2, 224. doi: 10.12688/f1000research.2-224.v1.

    Google Scholar 

  • Tantasuparuk, W., Lundeheim, N., and Dalin, A.M. 2000. Reproductive performance of purebred Landrace and Yorkshire sows in Thailand with special reference to seasonal influence and parity number. Theriogenology 54, 481–496.

    Article  CAS  PubMed  Google Scholar 

  • Yan, H., Potu, R., Lu, H., de Almeida, V.V., Stewart, T., Ragland, D., Armstrong, A., Adeola, O., Nakatsu, C.H., and Ajuwon, K.M. 2013. Dietary fat content and fiber type modulate hind gut microbial community and metabolic markers in the pig. PLoS ONE 8, e59581. doi: 10.1371.journal.pone.005913;81.

    Article  Google Scholar 

  • Yang, L., Bian, G., Su, Y., and Zhu, W. 2014. Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. Asian Australas. J. Anim. Sci. 27, 898–906.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu, Z. and Morrison, M. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 36, 808–812.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Kyung Kang.

Additional information

These authors contributed equally to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pajarillo, E.A.B., Chae, J.P., Balolong, M.P. et al. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol. 52, 646–651 (2014). https://doi.org/10.1007/s12275-014-4270-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4270-2

Keywords

Navigation