Skip to main content
Log in

Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 03 November 2014

Abstract

The concentration of major odor-causing compounds including phenols, indoles, short-chain fatty acids (SCFAs) and branched chain fatty acids (BCFAs) in response to the addition of powdered horse radish (PHR) and spent mushroom compost (SMC) was compared with control non-treated slurry (CNS) samples. A total of 97,465 rDNAs sequence reads were generated from three different samples (CNS, n = 2; PHR, n = 3; SMC, n = 3) using bar-coded pyrosequencing. The number of operational taxonomic units (OTUs) was lower in the PHR slurry compared with the other samples. A total of 11 phyla were observed in the slurry samples, while the phylogenetic analysis revealed that the slurry microbiome predominantly comprised members of the Bacteroidetes, Firmicutes, and Proteobacteria phyla. The rarefaction analysis showed the bacterial species richness varied among the treated samples. Overall, at the OTU level, 2,558 individual genera were classified, 276 genera were found among the three samples, and 1,832 additional genera were identified in the individual samples. A principal component analysis revealed the differences in microbial communities among the CNS, PHR, and SMC pig slurries. Correlation of the bacterial community structure with the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted pathways showed that the treatments altered the metabolic capabilities of the slurry microbiota. Overall, these results demonstrated that the PHR and S MC treatments significantly reduced the malodor compounds in pig slurry (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn J.H., Hong I.P., Bok J.I., Kim B.Y., Song J., and Weon H.Y. 2012a. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50, 735–745.

    Article  PubMed  Google Scholar 

  • Ahn J.H., Kim B.Y., Song J., and Weon H.Y. 2012b. Effects of PCR cycle number and DNA polymerase type on the 16S rRNA gene pyrosequencing analysis of bacterial communities. J. Microbiol. 50, 1071–1074.

    Article  CAS  PubMed  Google Scholar 

  • Allen H.K., Looft T., Bayles D.O., Humphrey S., Levine U.Y., Alt D., and Stanton T.B. 2011. Antibiotics in feed induce prophages in swine fecal microbiomes. mBio. 2, e00260–11.

    Article  Google Scholar 

  • Ariesyady H.D., Ito T., and Okabe S. 2007. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 41, 1554–1568.

    Article  CAS  PubMed  Google Scholar 

  • Bacosa H., Suto K., and Inoue C. 2010. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. Int. Biodeterior. Biodegrad. 64, 702–710.

    Article  CAS  Google Scholar 

  • Bacosa H.P., Suto K., and Inoue C. 2011. Preferential utilization of petroleum oil hydrocarbon components by microbial consortia reflects degradation pattern in aliphatic-aromatic hydrocarbon binary mixtures. World J. Microbiol. Biotechnol. 27, 1109–1117.

    Article  CAS  Google Scholar 

  • Blanes-Vidal V., Suh H., Nadimi E.S., Lofstrom P., Ellermann T., Andersen H.V., and Schwartz J. 2012. Residential exposure to outdoor air pollution from livestock operations and perceived annoyance among citizens. Environ. Int. 40, 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Bokulich N.A., Subramanian S., Faith J.J., Gevers D., Gordon J.I., Knight R., Mills D.A., and Caporaso J.G. 2013. Qualityfiltering vastly improves diversity estimates from illumina amplicon sequencing. Nat. Methods 10, 57–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowers K.J., Mesbah N.M., and Wiegel J. 2009. Biodiversity of poly-extremophilic bacteria: Does combining the extremes of high salt, alkaline ph and elevated temperature approach a physico-chemical boundary for life? Saline Syst. 5, 9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., and et al. 2010a. Qiime allows analysis of highthroughput community sequencing data. Nat. Methods 7, 335–336.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caporaso J.G., Bittinger K., Bushman F.D., DeSantis T.Z., Andersen G.L., and Knight R. 2010b. Pynast: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S. and Dong X. 2005. Proteiniphilum acetatigenes gen Nov., sp. Nov., from a uasb reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 55, 2257–2261.

    Article  CAS  PubMed  Google Scholar 

  • Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143.

    Article  Google Scholar 

  • Cottrell M.T. and Kirchman D.L. 2000. Natural assemblages of marine proteobacteria and members of the cytophaga-flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692–1697.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Downes J., Vartoukian S.R., Dewhirst F.E., Izard J., Chen T., Yu W.H., Sutcliffe I.C., and Wade W.G. 2009. Pyramidobacter piscolens gen Nov., sp. Nov., a member of the phylum ‘synergistetes’ isolated from the human oral cavity. Int. J. Syst. Evol. Microbiol. 59, 972–980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar R.C. 2010. Search and clustering orders of magnitude faster than blast. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Edgar R.C., Haas B.J., Clemente J.C., Quince C., and Knight R. 2011. Uchime improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flint H.J., Scott K.P., Duncan S.H., Louis P., and Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fox L.R., Purves W.K., and Nakada H.I. 1965. The role of horseradish peroxidase in indole-3-acetic acid oxidation. Biochemistry 4, 2754–2763.

    Article  CAS  PubMed  Google Scholar 

  • Govere E.M., Tonegawa M., Bruns M.A., Wheeler E.F., Heinemann P.H., Kephart K.B., and Dec J. 2005. Deodorization of swine manure using minced horseradish roots and peroxides. J. Agricult. Food Chem. 53, 4880–4889.

    Article  CAS  Google Scholar 

  • Govere E.M., Tonegawa M., Bruns M.A., Wheeler E.F., Kephart K.B., Voigt J.W., and Dec J. 2007. Using minced horseradish roots and peroxides for the deodorization of swine manure: A pilot scale study. Bioresour. Technol. 98, 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  • Haas B.J., Gevers D., Earl A.M., Feldgarden M., Ward D.V., Giannoukos G., Ciulla D., Tabbaa D., Highlander S.K., Sodergren E., and et al. 2011. Chimeric 16S rRNA sequence formation and detection in sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatamoto M., Imachi H., Yashiro Y., Ohashi A., and Harada H. 2007. Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl. Environ. Microbiol. 73, 4119–4127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawe S.M., Walker N., and Moss B.W. 1992. The effects of dietary fiber, lactose and antibiotic on the levels of skatole and indole in feces and subcutaneous fat in growing pigs. Anim. Prod. 54, 413–419.

    Article  Google Scholar 

  • Hobbs P.J., Misselbrook T.H., and Cumby T.R. 1999. Production and emission of odours and gases from ageing pig waste. J. Agric. Engng. Res. 72, 291–298.

    Article  Google Scholar 

  • Jensen M.T., Cox R.P., and Jensen B.B. 1995. 3-methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Appl. Environ. Microbiol. 61, 3180–3184.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juteau P., Bisaillon J.G., Lepine F., Ratheau V., Beaudet R., and Villemur R. 2003. Improving the biotreatment of hydrocarbons- contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation 14, 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Kindaichi T., Ito T., and Okabe S. 2004. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl. Environ. Microbiol. 70, 1641–1650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klibanov A.M., Tu T.M., and Scott K.P. 1983. Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221, 259–261.

    Article  CAS  PubMed  Google Scholar 

  • Lamendella R., Domingo J.W., Ghosh S., Martinson J., and Oerther D.B. 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11, 1–3.

    Article  Google Scholar 

  • Langille M.G., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J.A., Clemente J.C., Burkepile D.E., Vega Thurber R.L., Knight R., and et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.

    Article  CAS  PubMed  Google Scholar 

  • Le P.D., Aarnink A.J.A., Jongbloed A.W., Van der Peet-Schwering C.M.C., Ogink N.W.M., and Verstegen M.W.A. 2008. Interactive effects of dietary crude protein and fermentable carbohydrate levels on odour from pig manure. Livest. Sci. 114, 48–61.

    Article  Google Scholar 

  • Leng J., Xie L., Zhu R., Yang S., Gou X., Li S., and Mao H. 2011. Dominant bacterial communities in the rumen of gayals (bos frontalis), yaks (bos grunniens) and yunnan yellow cattle (bos taurs) revealed by denaturing gradient gel electrophoresis. Mol. Biol. Rep. 38, 4863–4872.

    Article  CAS  PubMed  Google Scholar 

  • Leser T.D., Amenuvor J.Z., Jensen T.K., Lindecrona R.H., Boye M., and Moller K. 2002. Culture-independent analysis of gut bacteria: The pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68, 673–690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leung M.Y.K., Fung K.P., and Choy Y.M. 1997. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology 35, 255–263.

    Article  CAS  PubMed  Google Scholar 

  • Li C.Y., Liu J.X., Wang Y.Z., Wu Y.M., Wang J.K., and Zhou Y.Y. 2009. Influence of differing carbohydrate sources on ltryptophan metabolism by porcine fecal microbiota studied in vitro. Livest. Sci. 120, 43–50.

    Article  Google Scholar 

  • Liao C.M. and Bundy D.S. 1994. Bacteria additives to the changes in gaseous mass-transfer from stored swine manure. J. Environ. Sci. Heal. B. 29, 1219–1249.

    Article  Google Scholar 

  • Looft T., Johnson T.A., Allen H.K., Bayles D.O., Alt D.P., Stedtfeld R.D., Sul W.J., Stedtfeld T.M., Chai B., Cole J.R., and et al. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 109, 1691–1696.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozupone C. and Knight R. 2005. Unifrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozupone C., Lladser M.E., Knights D., Stombaugh J., and Knight R. 2011. Unifrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma Y.F., Zhang Y., Zhang J.Y., Chen D.W., Zhu Y., Zheng H., Wang S.Y., Jiang C.Y., Zhao G.P., and Liu S.J. 2009. The complete genome of comamonas testosteroni reveals its genetic adaptations to changing environments. Appl. Environ. Microbiol. 75, 6812–6819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mackie R.I., Stroot P.G., and Varel V.H. 1998. Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 76, 1331–1342.

    CAS  PubMed  Google Scholar 

  • Mao S.Y., Zhang R.Y., Wang D.S., and Zhu W.Y. 2012. The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Vet. Res. 8, 2–7.

    Article  Google Scholar 

  • Marchesi J.R. 2010. Prokaryotic and eukaryotic diversity of the human gut. Adv. Appl. Microbiol. 72, 43–62.

    Article  PubMed  Google Scholar 

  • McDonald D., Price M.N., Goodrich J., Nawrocki E.P., DeSantis T.Z., Probst A., Andersen G.L., Knight R., and Hugenholtz P. 2012a. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald J.E., Houghton J.N., Rooks D.J., Allison H.E., and McCarthy A.J. 2012b. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: Evidence of a role for fibrobacters. Environ. Microbiol. 14, 1077–1087.

    Article  CAS  PubMed  Google Scholar 

  • Middelbos I.S., Boler B.M.V., Qu A., White B.A., Swanson K.S., and Fahey G.C. 2010. Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS ONE 5, e9768.

    Article  Google Scholar 

  • Miller D.N. and Varel V.H. 2003. Swine manure composition affects the biochemical origins, composition, and accumulation of odorous compounds. J. Anim. Sci. 81, 2131–2138.

    CAS  PubMed  Google Scholar 

  • Morawski B., Quan S., and Arnold F.H. 2001. Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. Biotechnol. Bioeng. 76, 99–107.

    Article  CAS  PubMed  Google Scholar 

  • Morgan X.C., Tickle T.L., Sokol H., Gevers D., Devaney K.L., Ward D.V., Reyes J.A., Shah S.A., LeLeiko N., Snapper S.B., and et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79.

    Article  Google Scholar 

  • Neifar M., Jaouani A., Martínez M.J., and Penninckx M.J. 2012. Comparative study of olive oil mill wastewater treatment using free and immobilized Coriolopsis polyzona and Pycnoporus coccineus. J. Microbiol. 50, 746–753.

    Article  CAS  PubMed  Google Scholar 

  • Ni J., Yan Q., and Yu Y. 2013. How much metagenomic sequencing is enough to achieve a given goal? Sci Rep. 3, 19–8.

    Google Scholar 

  • Niu B., Fu L., Sun S., and Li W. 2010. Artificial and natural duplicates in pyrosequencing reads of metagenomic data. BMC Bioinformatics 11, 1–7.

    Article  Google Scholar 

  • Oh J., Kim B.K., Cho W.S., Hong S.G., and Kim K.M. 2012. Pyro-Trimmer: a software with GUI for pre-processing 454 amplicon sequences. J. Microbiol. 50, 766–769.

    Article  CAS  PubMed  Google Scholar 

  • Overland M., Kjos N.K., Fauske A.K., Teige J., and Sorum H. 2011. Easily fermentable carbohydrates reduce skatole formation in the distal intestine of entire male pigs. Livest. Sci. 140, 206–217.

    Article  Google Scholar 

  • Parker D.B. 2008. Reduction of odor and voc emissions from a dairy lagoon. Appl. Eng. Agric. 24, 647–655.

    Article  Google Scholar 

  • Parker D.B., Cai L., Kim K.H., Hales K.E., Spiehs M.J., Woodbury B.L., Atkin A.L., Nickerson K.W., and Patefield K.D. 2012. Reducing odorous voc emissions from swine manure using soybean peroxidase and peroxides. Bioresour. Technol. 124, 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Roling W.F., Ferrer M., and Golyshin P.N. 2010. Systems approaches to microbial communities and their functioning. Curr. Opin. Biotechnol. 21, 532–538.

    Article  PubMed  Google Scholar 

  • Samanta A.K., Torok V.A., Percy N.J., Abimosleh S.M., and Howarth G.S. 2012. Microbial fingerprinting detects unique bacterial communities in the faecal microbiota of rats with experimentally-induced colitis. J. Microbiol. 50, 218–225.

    Article  PubMed  Google Scholar 

  • Savage D.C., Dubos R., and Schaedler R.W. 1968. The gastrointestinal epithelium and its autochthonous bacterial flora. J. Exp. Med. 127, 67–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Snaidr J., Amann R., Huber I., Ludwig W., and Schleifer K.H. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63, 2884–2896.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Snell-Castro R., Godon J.J., Delgenes J.P., and Dabert P. 2005. Characterisation of the microbial diversity in a pig manure storage pit using small subunit rdna sequence analysis. FEMS Microbiol. Ecol. 52, 229–242.

    Article  CAS  PubMed  Google Scholar 

  • Sousa D.Z., Pereira M.A., Smidt H., Stams A.J., and Alves M.M. 2007. Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS Microbiol. Ecol. 60, 252–265.

    Article  CAS  PubMed  Google Scholar 

  • Subair S., Fyles J., and O’Halloran I. 1999. Ammonia volatilization from liquid hog manure amended with paper products in the laboratory. J. Environ. Qual. 28, 202–207.

    Article  CAS  Google Scholar 

  • Sutton A.L., Kephart K.B., Verstegen M.W., Canh T.T., and Hobbs P.J. 1999. Potential for reduction of odorous compounds in swine manure through diet modification. J. Anim. Sci. 77, 430–439.

    CAS  PubMed  Google Scholar 

  • Tajima K., Aminov R.I., Nagamine T., Ogata K., Nakamura M., Matsui H., and Benno Y. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29, 159–169.

    Article  CAS  Google Scholar 

  • Tonegawa M., Dec J., and Bollag J.M. 2003. Use of additives to enhance the removal of phenols from water treated with horseradish and hydrogen peroxide. J. Environ. Qual. 32, 1222–1227.

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., and Gordon J.I. 2007. The human microbiome project. Nature 449, 804–810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Q., Garrity G.M., Tiedje J.M., and Cole J.R. 2007a. Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H.F., Zhu W.Y., Yao W., and Liu J.X. 2007b. Dgge and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice. Anaerobe 13, 127–133.

    Article  PubMed  Google Scholar 

  • Williams A.G. and Evans M.R. 1981. Storage of piggery slurry. Agr. Wastes 3, 311–321.

    Article  CAS  Google Scholar 

  • Williams B., McMullan J., and McCahey S. 2001. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresour. Technol. 79, 227–230.

    Article  CAS  PubMed  Google Scholar 

  • Ye F.X., Zhu R.F., and Li Y. 2009. Deodorization of swine manure slurry using horseradish peroxidase and peroxides. J. Hazard. Mater. 167, 148–153.

    Article  CAS  PubMed  Google Scholar 

  • Ziemer C.J., Kerr B.J., Trabue S.L., Stein H., Stahl D.A., and Davidson S.K. 2009. Dietary protein and cellulose effects on chemical and microbial characteristics of swine feces and stored manure. J. Environ. Qual. 38, 2138–2146.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Che Ok Jeon, Sung-Back Cho or Kyung-Tai Lee.

Additional information

These authors contributed equally to this work

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, OH., Raveendar, S., Kim, YJ. et al. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis. J Microbiol. 52, 918–929 (2014). https://doi.org/10.1007/s12275-014-4251-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4251-5

Keywords

Navigation