Skip to main content
Log in

Novel mutations in CYP51B from Penicillium digitatum involved in prochloraz resistance

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Green mold caused by Penicillium digitatum is one of the most serious postharvest diseases of citrus fruit, and it is ubiquitous in all citrus growing regions in the world. Sterol 14α-demethylase (CYP51) is one of the key enzymes of sterol biosynthesis in the biological kingdom and a prime target of antifungal drugs. Mutations in CYP51s have been found to be correlated with resistance to azole fungicides in many fungal species. To investigate the mechanism of resistance to prochloraz (PRC) in P. digitatum, the PRC sensitivity was determined in vitro in this study to assess the sensitivity of 78 P. digitatum isolates collected in Hubei province. The results showed that 25 isolates were prochloraz-resistant (PRC-R), including six high-resistant (HR) strains, twelve medium-resistant (MR) and seven low-resistant (LR) strains. A sequence analysis showed no consistent point mutations of PdCYP51A in the PRC-R strains, but four substitutions of CYP51B were found, Q309H in LR strains, Y136H and Q309H in HR strains, and G459S and F506I in MR strains, which corresponded to the four sensitivity levels. Based on the sequence alignment analysis and homology modeling followed by the molecular docking of the PdCYP51B protein, the potential correlation between the mutations and PRC resistance is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. 2005. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201.

    Article  PubMed  Google Scholar 

  • Brown, J.K.M., Jessop, A.C., Thomas, S., and Rezanoor, H.N. 1992. Genetic control of the response of Erysiphe graminis f. sp. hordei to ethirimol and triadimenol. Plant Pathol. 41, 126–135.

    Article  CAS  Google Scholar 

  • Canas-Gutierrez, G.P., Angarita-Velasquez, M.J., Restrepo-Florez, J.M., Rodriguez, P., Moreno, C.X., and Arango, R. 2009. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag. Sci. 65, 892–899.

    Article  PubMed  CAS  Google Scholar 

  • Cools, H.J., Mullins, J.G., Fraaije, B.A., Parker, J.E., Kelly, D.E., Lucas, J.A., and Kelly, S.L. 2011. Impact of recently emerged sterol 14α-demethylase (CYP51) variants of Mycosphaerella graminicola on azole fungicide sensitivity. Appl. Environ. Microbiol. 77, 3830–3837.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Waard, M.A. and Van Nistelrooy, J.G.M. 1984. Differential accumulation of fenarimol by a wild-type isolate and fenarimolresistant isolates of Penicillium italicum. Neth. J. Plant Path. 90, 143–153.

    Article  Google Scholar 

  • Delye, C., Laigret, F., and Corio-Costet, M.F. 1997. A mutation in the 14α-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl. Environ. Microbiol. 63, 2966–2970.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eckert, J.W., Sievert, J.R., and Ratnayake, M. 1994. Reduction of imazalil effectiveness against citrus green mold in California packinghouses by resistant biotypes of Penicillium digitatum. Plant Disease 78, 971–974.

    Article  CAS  Google Scholar 

  • Fraaije, B.A., Cools, H.J., Kim, S.H., Motteram, J., Clark, W.S., and Lucas, J.A. 2007. A novel substitution I381V in the sterol 14α-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides. Mol. Plant Pathol. 8, 245–254.

    Article  PubMed  CAS  Google Scholar 

  • Ghosoph, J.M., Schmidt, L.S., Margosan, D.A., and Smilanick, J.L. 2007. Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest Biol. Technol. 44, 9–18.

    Article  CAS  Google Scholar 

  • Hamamoto, H., Hasegawa, K., Nakaune, R., Lee, Y.J., Makizumi, Y., Akutsu, K., and Hibi, T. 2000. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum. Appl. Environ. Microbiol. 66, 3421–3426.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hamamoto, H., Nawata, O., Hasegawa, K., Nakaune, R., Lee, Y., Makizumi, Y., Akutsu, K., and Hibi, T. 2001 The role of the ABC transporter gene PMR1 in demethylation inhibitor resistance in Penicillium digitatum. Pestic. Biochem. Phys. 70, 19–26.

    Article  CAS  Google Scholar 

  • Holm, L. and Rosenstrom, P. 2010. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–549.

    Article  Google Scholar 

  • Holmes, G.J. and Eckert, J.W. 1999. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology 89, 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Karaoglanidis, G.S., Ioannidis, P.M., and Thanassoulopoulos, C.C. 2000. Reduced sensitivity of Cercospora beticola isolates to steroldemethylation- inhibiting fungicides. Plant Pathol. 49, 567–572.

    Article  CAS  Google Scholar 

  • Kelly, S.L., Lamb, D.C., and Kelly, D.E. 1999. Y132H substitution in Candida albicans sterol 14α-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbiol. Lett. 180, 171–175.

    PubMed  CAS  Google Scholar 

  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., and et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291.

    Article  CAS  Google Scholar 

  • Lepesheva, G.I., Park, H.W., Hargrove, T.Y., Vanhollebeke, B., Wawrzak, Z., Harp, J.M., Sundaramoorthy, M., Nes, W.D., Pays, E., Chaudhuri, M., and et al. 2010. Crystal structures of Trypanosoma brucei sterol 14α-demethylase and implications for selective treatment of human infections. J. Biol. Chem. 285, 1773–1780.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lepesheva, G.I. and Waterman, M.R. 2011. Structural basis for conservation in the CYP51 family. Biochim. Biophys. Acta 1814, 88–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leroux, P., Albertini, C., Gautier, A., Gredt, M., and Walker, A.S. 2007. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag. Sci. 63, 688–698.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart, S.R., Frade, J.P., Etienne, K.A., Pfaller, M.A., Diekema, D.J., and Balajee, S.A. 2011. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob. Agents Chemother. 55, 4465–4468.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Löffler, J., Kelly, S.L., Hebart, H., Schumacher, U., Lass-Flörl, C., and Einsele, H. 1997. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol. Lett. 151, 263–268.

    Article  PubMed  Google Scholar 

  • Marcet-Houben, M., Ballester, A.R., de la Fuente, B., Harries, E., Marcos, J.F., González-Candelas, L., and Gabaldón, T. 2012. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics 13, 6–6.

    Article  Google Scholar 

  • Marichal, P., Koymans, L., Willemsens, S., Bellens, D., Verhasselt, P., Luyten, W., Borgers, M., Ramaekers, F.C.S., Odds, F.C., and Bossche, H.V. 1999. Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 145, 2701–2713.

    PubMed  CAS  Google Scholar 

  • Mellado, E., Garcia-Effron, G., Alcazar-Fuoli, L., Melchers, W.J., Verweij, P.E., Cuenca-Estrella, M., and Rodriguez-Tudela, J.L. 2007. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Chemother. 51, 1897–1904.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morio, F., Loge, C., Besse, B., Hennequin, C., and Le Pape, P. 2010. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn. Microbiol. Infect. Dis. 66, 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. 2009. AutoDock4 and Auto- DockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakaune, R., Adachi, K., Nawata, O., Tomiyama, M., Akutsu, K., and Hibi, T. 1998. A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl. Environ. Microbiol. 64, 3983–3988.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakaune, R., Hamamoto, H., Imada, J., Akutsu, K., and Hibi, T. 2002. A novel ABC transporter gene, PMR5, is involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Mol. Genet. Genomics 267, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Nitahara, Y., Kishimoto, K., Yabusaki, Y., Gotoh, O., Yoshida, Y., Horiuchi, T., and Aoyama, Y. 2001. The amino acid residues affecting the activity and azole susceptibility of rat CYP51 (sterol 14-demethylase P450). J. Biochem. 129, 761–768.

    Article  PubMed  CAS  Google Scholar 

  • Porat, R., Daus, A., Weiss, B., Cohen, L., Fallik, E., and Droby, S. 2000. Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharvest Biol. Technol. 18, 151–157.

    Article  Google Scholar 

  • Rodero, L., Mellado, E., Rodriguez, A.C., Salve, A., Guelfand, L., Cahn, P., Cuenca-Estrella, M., Davel, G., and Rodriguez-Tudela, J.L. 2003. G484S amino acid substitution in lanosterol 14α-deme thylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob. Agents Chemother. 47, 3653–3656.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sheng, C.Q., Miao, Z.Y., Ji, H.T., Yao, J.Z., Wang, W.Y., Che, X.Y., Dong, G.Q., Lu, J.G., Guo, W., and Zhang, W.N.A. 2009. Threedimensional model of lanosterol 14α-demethylase from Cryptococcus neoformans: Active-site characterization and insights into azole binding. Antimicrob. Agents Chemother. 53, 3487–3495.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Snelders, E., van der Lee, H.A., Kuijpers, J., Rijs, A.J., Varga, J., Samson, R.A., Mellado, E., Donders, A.R., Melchers, W.J., and Verweij, P.E. 2008. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 5, e2009.

    Article  Google Scholar 

  • Stammler, G., Cordero, J., Koch, A., Semar, M., and Schlehuber, S. 2009. Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Protection 28, 891–897.

    Article  CAS  Google Scholar 

  • Strushkevich, N., Usanov, S.A., and Park, H.W. 2010. Structural basis of human CYP51 inhibition by antifungal azoles. J. Mol. Biol. 397, 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Ruan, R., Lin, L., Zhu, C., Zhang, T., Wang, M., Li, H., and Yu, D. 2013. Genomewide investigation into DNA elements and ABC transporters involved in imazalil resistance in Penicillium digitatum. FEMS Microbiol. Lett. 348, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Wang, J., Feng, D., Ma, Z., and Li, H. 2011. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Appl. Microbiol. Biotechnol. 91, 1107–1119.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Xu, Q., Ruan, R., Zhang, T., Zhu, C., and Li, H. 2013. PdMLE1, a specific and active transposon acts as a promoter and confers Penicillium digitatum with DMI resistance. Environ. Microbiol. 5, 135–142.

    Article  CAS  Google Scholar 

  • Wyand, R.A. and Brown, J.K.M. 2005. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Fungal Genet. Biol. 42, 726–735.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, L., Madison, V., Chau, A.S., Loebenberg, D., Palermo, R.E., and McNicholas, P.M. 2004. Three-dimensional models of wildtype and mutated forms of cytochrome P450 14α-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob. Agents Chemother. 48, 568–574.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang, Z., Zhu, Z., Ma, Z., and Li, H. 2009. A molecular mechanism of azoxystrobin resistance in Penicillium digitatum UV mutants and a PCR-based assay for detection of azoxystrobin-resistant strains in packing- or store-house isolates. Int. J. Food Microbiol. 131, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J.-W., Xie, Q.-y., and Li, H.-y. 2006. Occurrence of imazalilresistant biotype of Penicillium digitatum in China and the resistant molecular mechanism. J. Zhejiang Univ. SCIENCE A 7, 362–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deli Liu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yu, J., Liu, J. et al. Novel mutations in CYP51B from Penicillium digitatum involved in prochloraz resistance. J Microbiol. 52, 762–770 (2014). https://doi.org/10.1007/s12275-014-4112-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4112-2

Keywords

Navigation