Skip to main content
Log in

Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Optimum culture conditions, and carbon and nitrogen sources for production of water absorbing exopolysaccharide by Bacillus strain CMG1403 on local cheap substrates were determined using one variable at a time approach. Carbon source was found to be sole substrate for EPS biosynthesis in the presence of yeast extract that supported the growth only and hence, indirectly enhanced the EPS yield. Whereas, urea only coupled with carbon source could enhance the EPS production but no effect on growth. The maximum yield of EPS was obtained when Bacillus strain CMG1403 was grown statically in neutral minimal medium with 25% volumetric aeration at 30°C for 10 days. Under these optimum conditions, a maximum yield of 2.71±0.024, 3.82±0.005, 4.33±0.021, 4.73±0.021, 4.85±0.024, and 5.52±0.016 g/L culture medium was obtained with 20 g (sugar) of sweet whey, glucose, fructose, sucrose, cane molasses and sugar beet the most efficient one respectively as carbon sources. Thus, the present study showed that under optimum culture conditions, the local cheap substrates could be superior and efficient alternatives to synthetic carbon sources providing way for an economical production of water absorbing EPS by indigenous soil bacterium Bacillus strain CMG1403.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Mehawgoud, A., Aboulwafa, M., and Nadia, H. 2008. Optimization of surfactin production by Bacillus substillis isolate BSS. Appl. Biochem. Biotechnol. 150, 305–325.

    Article  Google Scholar 

  • Borgio, J.F., Bency, B.J., Ramesh, S., and Amuthan, M. 2009. Exopolysaccharide production by Bacillus subtilis NCIM 2063, Pseudomonas aeruginosa NCIM 2862 and Streptococcus mutans MTCC 1943 using batch culture in different media. Afr. J. Biotechnol. 9, 5454–5457.

    Google Scholar 

  • Cerning, J., Renard, C.M.G.C., Thibault, J.F., Bouillanne, C., Landon, M., Desmazeaud, M., and Topisirovic, L. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60, 3914–3919.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng, K.C., Demirci, A., and Catchmark, J.M. 2011. Pullulan: biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 92, 29–44.

    Article  CAS  PubMed  Google Scholar 

  • Chiu-Yeh, W., Zeng-Chin, L., and Chian-Ping, L. 2008. Effect of carbon and nitrogen sources on the production and carbohydrate composition of exopolysaccharide by submerged culture of Pleurotus citrinopileatus. J. Food Drug Anal. 16, 61–67.

    Google Scholar 

  • Combet-Blanc, Y., Kalamba, K.K., and Kergoat, P.Y. 1995. Effect of pH on Bacillus thermoamylovorans growth and glucose fermentation. Appl. Environ. Microbiol. 61, 656–659.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dlamini, A.M. and Peiris, P.S. 1997a. Biopolymer production by a Klebsiella oxytoca isolate using whey as fermentation substrate. Biotechnol. Lett. 19, 127–130.

    Article  CAS  Google Scholar 

  • Dlamini, A.M. and Peiris, P.S. 1997b. Production of exopolysaccharide by Pseudomonas sp ATCC 31461 (Pseudomonas elodea) using whey as fermentation substrate. Appl. Microbiol. Biotechnol. 47, 52–57.

    Article  CAS  Google Scholar 

  • Dlamini, A.M., Peiris, P.S., Bavor, J.H., and Kailasapathy, K. 2007. Characterization of the exopolysaccharide produced by a whey utilizing strain of Klebsiella oxytoca. Afri. J. Biotechnol. 6, 2603–2611.

    CAS  Google Scholar 

  • Ebube, N.K., Udeala, O.K., and Ghobashy, A.A. 1992. Isolation and characterization of a novel polysaccharide from Bacillus licheniformis NCIB 11634. J. Indust. Microbiol. 9, 239–245.

    Article  Google Scholar 

  • Gandhi, H.P., Ray, R.M., and Patel, R.M. 1997. Exopolymer production by Bacillus species. Carbohy. Polym. 34, 323–327.

    Article  CAS  Google Scholar 

  • Han, Y.W. and Watson, M.A. 1992. Production of microbial levan from sucrose, sugarcane juice and beet molasses. J. Ind. Microbiol. 9, 257–260.

    Article  CAS  Google Scholar 

  • Jie, H., He, X., and Wei-Yi, T. 2008. Optimizing fermentation and purification of extracellular polysaccharides of Bacillus subtilis. J. Anhui. Agri. Sci. 18.

  • Juan, L.U., Min, X., and Li-li, L.U. 2011. Optimization of fermentation conditions for production of levan by Bacillus licheniformis 8-37-0-1. Food Sci. 32, 183–187.

    Google Scholar 

  • Kawai, H., Isobe, Y., Horibe, M., Tokuda, J., Tokuno, I., Endo, K., and Kawai, F.l. 1992. Production of a novel extracellular polysaccharide by a Bacillus strain isolated from soil. Biosci. Biotechnol. Biochem. 56, 853–857.

    Article  CAS  Google Scholar 

  • Kazak, H., Toksoy, Ö.E., and Dekker, R.F.H. 2010. Extremophiles as sources of exopolysaccharides. In Ito, R. and Matsuo, Y. (eds.), Handbook of Carbohydrate Polymers: development, properties and applications. Nova Science Publishers, New York, N.Y., USA.

    Google Scholar 

  • Kuntiya, A., Hanmoungjai, P., Techapun, C., Sasaki, K., and Seesuriyachan, P. 2010. Influence of pH, sucrose concentration and agitation speed on exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as a raw material substitute. Maejo Int. J. Sci. Technol. 4, 318–330.

    CAS  Google Scholar 

  • Kurane, R. and Nohata, Y. 1994. A new water-absorbing polysaccharide from Alcaligenes latus. Biosci. Biotechnol. Biochem. 58, 235–238.

    Article  CAS  Google Scholar 

  • Kurane, R. and Nohata, Y. 1995. Identification of constituent sugars of polysaccharide bioabsorbent from Alcaligenes latus. Biosci. Biotechnol. Biochem. 59, 908–911.

    Article  CAS  Google Scholar 

  • Lee, I.Y., Seo, W.T., Kim, G.J., Kim, M.K., Ahn, S.G., Kwon, G.S., and Park, Y.H. 1997. Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa. Bioprocess Eng. 16, 71–75.

    Article  CAS  Google Scholar 

  • Mao, Y., Tian, C., Zhu, J., Zhang, T., and Tong, L. 2011. Production of a novel biopolymer by culture of Bacillus cereus B-11 using molasses wastewater and its use for dye removal. Adv. Mater. Res. 230, 1119–1122.

    Article  Google Scholar 

  • McWilliams, A. 2011. Microbial products: technologies, applications and global markets. BCC Research. http://www.giiresearch.com/report/bc180728-glob-microbial-prod.html.

    Google Scholar 

  • Muhammadi and Ahmed, N. 2006. Phenotypic diversity among indigenous soil bacterial strains from different geographical regions of Karachi. Int. J. Biol. Biotechnol. 3, 733–738.

    CAS  Google Scholar 

  • Muhammadi and Ahmed, N. 2008. Isolation and characterization of exopolysaccharide produced by indigenous soil bacterium Bacillus strain CMG1403. Iran Polym. J. 17, 315–323.

    CAS  Google Scholar 

  • Nakamura, L.K. 1987. Deoxyribonucleic acid relatedness of lactose-positive Bacillus subtilis strains and Bacillus amyloliquefaciens. Int. J. Syst. Bacteriol. 37, 444–445.

    Article  Google Scholar 

  • Nicolaus, B., Kambourova, M., and Toksoy, Ö.E. 2010. Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ. Technol. 31, 1145–1158.

    Article  CAS  PubMed  Google Scholar 

  • Panda, T., Kundu, S., and Majumdar, S.K. 1984. Studies on citric acid production by Aspergillus niger using treated Indian can molasses. Microbiol. J. 52, 61–66.

    Google Scholar 

  • Pham, P.L., Dupont, I., Roy, D., Lapointe, G., and Cerning, J. 2000. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl. Environ. Microbiol. 66, 2302–2310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Razack, S.A., Velayutham, V., and Thangavelu, V. 2013. Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turk. J. Biol. 37, 280–288.

    Google Scholar 

  • Salehizadeh, H. and van Loosdrecht, M.C.M. 2004. Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol. Adv. 22, 261–279.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, I.M., Lin, F.C., and Brown, R.M. Jr. 1990. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol. Biol. 15, 673–683.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, I.M., Lin, F.C., and Brown, R.M. Jr. 1991. Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Mol. Biol. 169, 947–954.

    Article  Google Scholar 

  • Shih, I-L., Yu, Y-T., Shieh, C-J., and Hsieh, C.Y. 2005. Selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi. J. Agric. Food Chem. 53, 8211–8215.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M.F., Fornari, R.C.G., Mazutti, M.A., Oliveira, D., Padilha, F.F., Cichoski, A.J., Cansian, R.L., Luccio, M.D., and Treichel, H. 2009. Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. J. Food Eng. 90, 119–123.

    Article  CAS  Google Scholar 

  • Sutherland, I.W. 2001. Microbial polysaccharides from Gram-negative bacteria. Int. Dairy J. 11, 663–674.

    Article  CAS  Google Scholar 

  • Sutherland, I.W. 2007. Bacterial exopolysaccharides. In Kamerling, J.P. (ed.), Comprehensive glycoscience. Elsevier, Amsterdam.

    Google Scholar 

  • Szumigaj, J., Akowska, Z., and Klimek, L. 2008. Exopolysaccharide production by Bacillus strains colonizing packaging foils. Pol. J. Microbiol. 57, 281–287.

    CAS  PubMed  Google Scholar 

  • Ton-That, H., Marraffini, L.A., and Schneewind, O. 2004. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochem. Biophys. Acta. 1694, 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg, D.J.C., Robijn, G.W., Janssen A.C., Giuseppin, M.L.F., Vreeker, R., Kamerling, J.P., Vliegenthart, J.F.G., Ledeboer, A.M., and Verrips, C.T. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1-and characterization of the polysaccharide. Appl. Environ. Microbiol. 61, 2840–2844.

    PubMed Central  PubMed  Google Scholar 

  • Younis, M.A.M., Hezayen, F.F., Nour-Edein, M.A., and Shabe, M.S.A. 2010. Optimization of cultivation medium and growth conditions for Bacillus subtilis KO strain isolated from sugar cane molasses. Amer-Eurasian. J. Agric. Environ. Sci. 7, 31–37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhammadi, Afzal, M. Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach. J Microbiol. 52, 44–52 (2014). https://doi.org/10.1007/s12275-014-2622-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-2622-6

Keywords

Navigation