Skip to main content
Log in

The pectate lyase encoded by the pecCl1 gene is an important determinant for the aggressiveness of Colletotrichum lindemuthianum

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Colletotrichum lindemuthianum is the causal agent of anthracnose in the common bean, and the genes that encode its cell-wall-degrading enzymes are crucial for the development of the disease. Pectinases are the most important group of cell wall-degrading enzymes produced by phytopathogenic fungi. The pecC1l gene, which encodes a pectate lyase in C. lindemuthianum, was isolated and characterized. Possible cis-regulatory elements and transcription factor binding sites that may be involved in the regulation of genetic expression were detected in the promoter region of the gene. pecCl1 is represented by a single copy in the genome of C. lindemuthianum, though in silico analyses of the genomes of Colletotrichum graminicola and Colletotrichum higginsianum suggest that the genome of C. lindemuthianum includes other genes that encode pectate lyases. Phylogenetic analysis detected two groups that clustered based on different members of the pectate lyase family. Analysis of the differential expression of pecCl1 during different stages of infection showed a significant increase in pecCl1 expression five days after infection, at the onset of the necrotrophic phase. The split-maker technique proved to be an efficient method for inactivation of the pecCl1 gene, which allowed functional study of a mutant with a site-specific integration. Though gene inactivation did not result in complete loss of pectate lyase activity, the symptoms of anthracnose were reduced. Analysis of pectate lyases might not only contribute to the understanding of anthracnose in the common bean but might also lead to the discovery of an additional target for controlling anthracnose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Alkan, N., Fluhr, R., Sherman, A., and Prusky, D. 2008. Role of ammonia secretion and pH modulation on pathogenicity of Colletotrichum coccodes on tomato fruit. Mol. Plant-Microbe Interact. 21, 1058–1066.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Annis, S.L. and Goodwin, P.H. 1997. Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur. J. Plant Pathol. 103, 1–14.

    Article  CAS  Google Scholar 

  • Ansari, K.I., Palacios, N., Araya, C., Langin, T., Egan, D., and Doohan, F.M. 2004. Pathogenic and genetic variability among Colletotrichum lindemuthianum isolates of different geographic origins. Plant Pathol. 53, 635–642.

    Article  CAS  Google Scholar 

  • Aro, N., Ilmén, M., Saloheimo, A., and Penttil. 2002. ACEI is a repressor of cellulase and xylanase genes in Trichoderma reesei. Appl. Environ. Microbiol. 69, 56–65.

    Article  Google Scholar 

  • Aro, N., Pakula, T., and Penttil. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29, 719–739.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J.A. and Jeger, M.J. 1992. Colletotrichum: Biology, Pathology and Control. Commonwealth Mycological Institute, Wallingford, 388.

    Google Scholar 

  • Barcelos, Q.L., Souza, E.A., and Damasceno e Silva, K.J. 2011. Vegetative compatibility and genetic analysis of Colletotrichum lindemuthianum isolates from Brazil. Genet. Mol. Res. 10, 230–242.

    Article  PubMed  CAS  Google Scholar 

  • Barthe, J.P., Cantenys, D., and Touzé, A. 1981. Purification and characterization of two polygalacturonases secreted by Colletotrichum lindemuthianum. Phytopathology 100, 162–171.

    CAS  Google Scholar 

  • Basse, C.W. and Farfsing, J.W. 2006. Promoters and their regulation in Ustilago maydis and other phytopathogenic fungi. FEMS Microbiol. Lett. 254, 208–216.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Daniel, B., Bar-Zvi, D., and Tsror (Lahkim), L. 2011. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines. Mol. Plant Pathol. 10, 1364–3703.

    Google Scholar 

  • Catlett, N.L., Lee, B.N., Yoder, O.C., and Turgeon, B.G. 2003. Splitmarker recombination for efficient targeted deletion of fungal genes. Fungal Genet. News 50, 9–11.

    Google Scholar 

  • Centis, S., Dumas, B., Fournier, J., Marolda, M., and Esquerré-Tugayé, M.T. 1996. Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopatogenic fungus Colletotricum lindemuthianum. Gene 170, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Centis, S., Guillas, I., Sejalon, N., Esquerré-Tugayé, M.T., and Dumas, B. 1997. Endopolygalacturonase genes from Colletotrichum lindemuthianum: cloning of CLPG2 and comparison of its expression to that of CLPG1 during saprophytic and parasitic growth of the fungus. Mol. Plant-Microbe Interact. 10, 769–775.

    Article  PubMed  CAS  Google Scholar 

  • Colletotrichum Sequencing Project. Broad Institute of Harvard and MIT [http://www.broadinstitute.org/].

  • Collmer, A., Ried, J.L., and Mount, M.S. 1988. Assay methods for pectic enzymes. Meth. Enzymol. 161, 329–399.

    Article  CAS  Google Scholar 

  • Colot, H., Park, G., Jones, J., Turner, G., Borkovich, K., and Dunlap, J.C. 2006. High throughput knockout of transcription factors in Neurospora reveals diverse phenotypes. Proc. Natl. Acad. Sci. USA 103, 10352–10357.

    Article  PubMed  CAS  Google Scholar 

  • Damasceno e Silva, K.J., Souza, E.A., and Ishikawa, F.H. 2007. Characterization of Colletotrichum lindemuthianum isolates from the state of Minas Gerais, Brazil. J. Phytopathol. 155, 241–247.

    Article  CAS  Google Scholar 

  • Dufresne, M., Bailey, J.A., Michel, D., and Langin, T. 1998. clk1, a serine/threonine protein kinase encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Mol. Plant-Microbe Interact. 11, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson, E., Brunak, S., von Heijne, G., and Nielsen, H. 2007. Locating proteins in the cell using TargetP, SignalP, and related tools. Nat. Protoc. 2, 953–971.

    Article  PubMed  CAS  Google Scholar 

  • Fontenelle, M.R. 2010. Ph. D. thesis. Detecção e análise de genes que são expressos na interação Colletotrichum lindemuthianum-Phaseolus vulgaris. Federal University of Viçosa, Brazil.

    Google Scholar 

  • Geffroy, V., Sevignac, M., De Oliveira, J.C., Fouilloux, G., Skroch, P., Thoquet, P., Gepts, P., Langin, T., and Dron, M. 2000. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance. Mol. Plant-Microbe Interact. 13, 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Geffroy, V., Sicard, D., De Oliveira, J.C., Sevignac, M., Cohen, S., Gepts, P., Neema, C., Langin, T., and Dron, M. 1999. Identification of an ancestral resistance gene cluster involved in the co evolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol. Plant-Microbe Interact. 12, 774–784.

    Article  PubMed  CAS  Google Scholar 

  • Gravelat, F.N., Askew, D.S., and Sheppard, D.C. 2012. Targeted gene deletion in Aspergillus fumigatus using the hygromycin-resistance split-marker approach. Methods Mol. Biol. 845, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, C., O’Connell, R., Gaulin, E., Salesses, V., Esquerre-Tugaye, M.T., and Dumas, B. 2004. Production of a cell wall-associated endopolygalacaturonase by Colletotrichum lindemuthianum and pectin degradation during bean infection. Fungal Genet. Biol. 41, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Jia, J. and Wheals, A. 2000. Endopolygalacturonase genes and enzymes from Saccharomyces cerevisiae and Kluyveromyces marxianus. Curr. Genet. 38, 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Kramer-Haimovich, H., Servi, E., Katan, T., Rollins, J., Okon, Y., and Prusky, D. 2006. Effect of ammonia production by Colletotrichum gloeosporioides on pelB activation, pectate lyase secretion, and fruit pathogenicity. Appl. Environ. Microbiol. 72, 1034–1039.

    Article  PubMed  CAS  Google Scholar 

  • Krijger, J., Horbach, R., Behr, M., Schweizer, P., Deising, H.B., and Wirsel, S.G.R. 2008. The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Mol. Plant-Microbe Interact. 21, 1325–1336.

    Article  PubMed  CAS  Google Scholar 

  • Lara-Márquez, A., Zavala-Páramo, M.G., López-Romero, E., and Camacho, H.C. 2011a. Biotechnological potential of pectinolytic complexes of fungi. Biotechnol. Lett. 33, 859–868.

    Article  PubMed  Google Scholar 

  • Lara-Márquez, A., Zavala-Páramo, M.G., López-Romero, E., Calderón-Cortés, N., López-Gómez, R., Conejo-Saucedo, U., and Cano-Camacho, H. 2011b. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol. 11, 260.

    Article  PubMed  Google Scholar 

  • Lebeda, A., Luhová, L., Sedlárová, M., and Jancova, D. 2001. The role of enzymes in plant-fungal pathogen interactions. J. Plant Dis. Protect. 108, 89–111.

    CAS  Google Scholar 

  • Li, J. and Goodwin, P.H. 2002. Expression of cgmpg2, an endopolygalacturonase gene of Colletotrichum gloeosporioides f. sp. malvae, in culture and during infection of Malva pusilla. J. Phytopathol. 150, 213–219.

    Article  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Miyara, I., Shafran, H., Kramer-Haimovich, H., Rollins, J., Sherman, A., and Prusky, D. 2008. Multi-factor regulation of pectate lyase secretion by Colletotrichum gloeosporioides pathogenic on avocado fruits. Mol. Plant Pathol. 9, 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Moran, F., Nasuno, S., and Starr, M.P. 1968. Extracellular and intracellular polygalacturonic acid trans-eliminases of Erwinia carotovora. Arch. Biochem. Biophys. 123, 298–306.

    Article  PubMed  CAS  Google Scholar 

  • Münch, S., Ligner, U., Floss, D.S., Ludwig, N., Sauer, N., and Deising, H.B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165, 41–51.

    Article  PubMed  Google Scholar 

  • Münch, S., Ludwig, N., Floss, D.S., Sugui, J.A., Koszucka, A.M., Voll, L.M., Sonnewald, U., and Deising, A.H.B. 2011. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation. Mol. Plant Pathol. 12, 43–55.

    Article  PubMed  Google Scholar 

  • O’Connell, R.J., Thon, M.R., Hacquard, S., Amyotte, S.G., Kleemann, J., Torres, M.F., Damm, U., Buiate, E.A., Epstein, L., Alkan, N., and et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44, 1060–1065.

    Article  PubMed  Google Scholar 

  • Page, R.D.M. 1996. Treeview: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358.

    PubMed  CAS  Google Scholar 

  • Pellier, A.L., Laugé, R., Veneault-Fourrey, C., and Langin, T. 2003. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol. Microbiol. 48, 639–655.

    Article  PubMed  CAS  Google Scholar 

  • Perfect, S.E., Hughes, H.B., O’Connell, R.J., and Green, J.R. 1999. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27, 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Punt, P.J., Oliver, R.P., Dingemanse, M.A., Pouwels, P.H., and Van Den Hondel, C.A.M.J.J. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Redman, R.S. and Rodriguez, R.J. 1994. Factors affecting the efficient transformation of Colletotrichum species. Exp. Mycol. 18, 230–246.

    Article  CAS  Google Scholar 

  • Reignault, Ph., Valette-Collet, O., and Boccara, M. 2008. The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur. J. Plant Pathol. 120, 1–11.

    Article  CAS  Google Scholar 

  • Rodriguez, R.J. and Yoder, O.C. 1987. Selectable genes for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli (Colletotrichum lindemuthianum). Gene 54, 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, L.M., Kim, Y.K., Guo, W., González-Candelas, L., Li, D., and Kolattukudy, P.E. 2000. Requirement for either a host or pectin induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc. Natl. Acad. Sci. USA 97, 9813–9818.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, N.Y., USA.

    Google Scholar 

  • Shih, J., Wei, Y., and Goodwin, P.H. 2000. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f. sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene 243, 139–150.

    Article  PubMed  CAS  Google Scholar 

  • Sicard, D., Michalakis, Y., Dron, M., and Neema, C. 1997. Genetic diversity and pathogenic variation of Colletotrichum lindemuthianum in the three centers of origen of its wild host, Phaseolus vulgaris. Phypathology 87, 807–813.

    Article  CAS  Google Scholar 

  • Specht, C.A., DiRusso, C.C., Novotny, C.P., and Ullrich, R.C. 1982. A method for extracting high molecular-weight deoxyribonucleic acid from fungi. Anal. Biochem. 119, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Swo Vord, D.L. 2002. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA 5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Wijesundera, R.L.C., Bailey, J.A., and Byrde, R.J.W. 1984. Production of pectin lyase by Colletotrichum lindemuthianum in culture and infected bean (Phaseolus vulgaris) tissue. J. Gen. Microbiol. 130, 285–290.

    CAS  Google Scholar 

  • Yakoby, N., Beno-Moualem, D., Keen, N.T., Dinoor, A., Pines, O., and Prusky, D. 2001. Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruit-fungus interaction. Mol. Plant Microbe Interact. 14, 988–995.

    Article  PubMed  CAS  Google Scholar 

  • You, B.J., Lee, M.H., and Chung, K.R. 2009. Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach. Arch. Microbiol. 191, 615–622.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Vieira de Queiroz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cnossen-Fassoni, A., Bazzolli, D.M.S., Brommonschenkel, S.H. et al. The pectate lyase encoded by the pecCl1 gene is an important determinant for the aggressiveness of Colletotrichum lindemuthianum . J Microbiol. 51, 461–470 (2013). https://doi.org/10.1007/s12275-013-3078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3078-9

Keywords

Navigation