Skip to main content
Log in

Hrq1 functions independently of Sgs1 to preserve genome integrity in Saccharomyces cerevisiae

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Maintenance of genome stability in eukaryotes involves a number of conserved proteins, including RecQ helicases, which play multiple roles at various steps in homologous recombination and DNA repair pathways. Sgs1 has been described as the only RecQ helicase in lower eukaryotes. However, recent studies revealed the presence of a second RecQ helicase, Hrq1, which is most homologous to human RECQL4. Here we show that hrq1Δ mutation resulted in increased mitotic recombination and spontaneous mutation in Saccharomyces cerevisiae, and sgs1Δ mutation had additive effects on the phenotypes of hrq1Δ. We also observed that the hrq1Δ mutant was sensitive to 4-nitroquinoline 1-oxide and cisplatin, which was not complemented by overexpression of Sgs1. In addition, the hrq1Δ sgs1Δ double mutant displayed synthetic growth defect as well as a shortened chronological life span compared with the respective single mutants. Analysis of the type of age-dependent Canr mutations revealed that only point mutations were found in hrq1Δ, whereas significant numbers of gross deletion mutations were found in sgs1Δ. Our results suggest that Hrq1 is involved in recombination and DNA repair pathways in S. cerevisiae independent of Sgs1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton, T.M. and Hickson, I.D. 2010. Yeast as a model system to study RecQ helicase function. DNA Repair (Amst) 9, 303–314.

    Article  CAS  Google Scholar 

  • Barea, F., Tessaro, S., and Bonatto, D. 2008. In silico analyses of a new group of fungal and plant RecQ4-homologous proteins. Comput. Biol. Chem. 32, 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, K.A., Gangloff, S., and Rothstein, R. 2010. The RecQ DNA helicases in DNA repair. Annu. Rev. Genet. 44, 393–417.

    Article  PubMed  CAS  Google Scholar 

  • Bohr, V.A. 2008. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci. 33, 609–620.

    Article  PubMed  CAS  Google Scholar 

  • Cejka, P. and Kowalczykowski, S.C. 2010. The full-length Saccharomyces cerevisiae Sgs1 protein is a vigorous DNA helicase that preferentially unwinds holliday junctions. J. Biol. Chem. 285, 8290–8301.

    Article  PubMed  CAS  Google Scholar 

  • Chu, W.K. and Hickson, I.D. 2009. RecQ helicases: multifunctional genome caretakers. Nat. Rev. Cancer 9, 644–654.

    Article  PubMed  CAS  Google Scholar 

  • Chris, K., Michaelis, S., and Mitchell, A. 1994. Methods in yeast genetics. pp. 207–217. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Cobb, J.A., Schleker, T., Rojas, V., Bjergbaek, L., Tercero, J.A., and Gasser, S.M. 2005. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055–3069.

    Article  PubMed  CAS  Google Scholar 

  • Croteau, D.L., Singh, D.K., Hoh Ferrarelli, L., Lu, H., and Bohr, V.A. 2012. RECQL4 in genomic instability and aging. Trends Genet. 28, 624–631.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.L., North, P.S., and Hickson, I.D. 2007. Role for BLM in replication-fork restart and suppression of origin firing after replicative stress. Nat. Struct. Mol. Biol. 14, 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Fan, W. and Luo, J. 2008. RecQ4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A (XPA). J. Biol. Chem. 283, 29037–29044.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, A.K., Rossi, M.L., Singh, D.K., Dunn, C., Ramamoorthy, M., Croteau, D.L., Liu, Y., and Bohr, V.A. 2012. RECQL4, the protein mutated in Rothmund-Thomson syndrome, functions in telomere maintenance. J. Biol. Chem. 287, 196–209.

    Article  PubMed  CAS  Google Scholar 

  • Groocock, L.M., Prudden, J., Perry, J.J., and Boddy, M.N. 2012. The RecQ4 orthologue Hrq1 is critical for DNA interstrand cross-link repair and genome stability in fission yeast. Mol. Cell. Biol. 32, 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Ide, F., Oda, H., Nakatsuru, Y., Kusama, K., Sakashita, H., Tanaka, K., and Ishikawa, T. 2001. Xeroderma pigmentosum group A gene action as a protection factor against 4-nitroquinoline 1-oxide-induced tongue carcinogenesis. Carcinogenesis 22, 567–572.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C.J., Edwards, S.M., and Waters, R. 1989. The repair of identified large DNA adducts induced by 4-nitroquinoline-1-oxide in normal or xeroderma pigmentosum group A human fibroblasts, and the role of DNA polymerases alpha or delta. Carcinogenesis 10, 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  • Kadyk, L.C. and Hartwell, L.H. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132, 387–402.

    PubMed  CAS  Google Scholar 

  • Kwon, S.H., Choi, D.H., Lee, R., and Bae, S.H. 2012. Saccharomyces cerevisiae Hrq1 requires a long 3-tailed DNA substrate for helicase activity. Biochem. Biophys. Res. Commun. 427, 623–628.

    Article  PubMed  CAS  Google Scholar 

  • Madia, F., Gattazzo, C., Wei, M., Fabrizio, P., Burhans, W.C., Weinberger, M., Galbani, A., Smith, J.R., Nguyen, C., Huey, S., and et al. 2008. Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system. J. Cell. Biol. 180, 67–81.

    Article  PubMed  CAS  Google Scholar 

  • Mandell, J.G., Goodrich, K.J., Bahler, J., and Cech, T.R. 2005. Expression of a RecQ helicase homolog affects progression through crisis in fission yeast lacking telomerase. J. Biol. Chem. 280, 5249–5257.

    Article  PubMed  CAS  Google Scholar 

  • Mimitou, E.P. and Symington, L.S. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774.

    Article  PubMed  CAS  Google Scholar 

  • Monnat, R.J. Jr. 2010. Human RECQ helicases: roles in DNA metabolism, mutagenesis and cancer biology. Semin. Cancer Biol. 20, 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Myung, K., Datta, A., Chen, C., and Kolodner, R.D. 2001. SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat. Genet. 27, 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Onoda, F., Seki, M., Miyajima, A., and Enomoto, T. 2000. Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom’s syndrome gene. Mutat. Res. 459, 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Onoda, F., Seki, M., Wang, W., and Enomoto, T. 2004a. The hyper unequal sister chromatid recombination in an sgs1 mutant of budding yeast requires MSH2. DNA Repair (Amst) 3, 1355–1362.

    Article  CAS  Google Scholar 

  • Onoda, F., Takeda, M., Seki, M., Maeda, D., Tajima, J., Ui, A., Yagi, H., and Enomoto, T. 2004b. SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair (Amst) 3, 429–439.

    Article  CAS  Google Scholar 

  • Resnick, M.A., Sugino, A., Nitiss, J., and Chow, T. 1984. DNA polymerases, deoxyribonucleases, and recombination during meiosis in Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2811–2817.

    PubMed  CAS  Google Scholar 

  • Seki, M., Otsuki, M., Ishii, Y., Tada, S., and Enomoto, T. 2008. RecQ family helicases in genome stability: lessons from gene disruption studies in DT40 cells. Cell Cycle 7, 2472–2478.

    Article  PubMed  CAS  Google Scholar 

  • Sikorski, R.S. and Hieter, P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    PubMed  CAS  Google Scholar 

  • Singh, D.K., Ghosh, A.K., Croteau, D.L., and Bohr, V.A. 2012. RecQ helicases in DNA double strand break repair and telomere maintenance. Mutat. Res. 736, 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Watt, P.M., Hickson, I.D., Borts, R.H., and Louis, E.J. 1996. SGS1, a homologue of the Bloom’s and Werner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144, 935–945.

    PubMed  CAS  Google Scholar 

  • Wu, L. 2007. Role of the BLM helicase in replication fork management. DNA Repair (Amst) 6, 936–944.

    Article  CAS  Google Scholar 

  • Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E., and Ira, G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ho Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, DH., Lee, R., Kwon, SH. et al. Hrq1 functions independently of Sgs1 to preserve genome integrity in Saccharomyces cerevisiae . J Microbiol. 51, 105–112 (2013). https://doi.org/10.1007/s12275-013-3048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3048-2

Keywords

Navigation