Skip to main content
Log in

Lysinibacillus chungkukjangi sp. nov., isolated from Chungkukjang, Korean fermented soybean food

  • Note
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

One bacterial strain 2RL3-2T was isolated from Chungkukjang, a traditional Korean fermented food made from soybeans, and determined to be a Gram-positive, aerobic, spore-forming rod. Growth of the novel strain was optimal at 30°C and pH 7.0. The 16S rRNA gene of strain 2RL3-2T showed the highest level of sequence similarity to Lysinibacillus sinduriensis BLB-1T (99.0%), Lysinibacillus massiliensis 4400831T (97.1%), Lysinibacillus xylanilyticus XDB9T (97.0%), and Lysinibacillus odysseyi 34hs-1T (96.8%). Phylogenetic analysis showed that strain 2RL3-2T formed a robust cluster with L. sinduriensis BLB-1T, L. massiliensis 4400831T, and L. odyssey 34hs-1T. The major fatty acids were anteiso-C15:0 (47.3%), iso-C16:0 (16.3%), and anteiso-C17:0 (11.3%), and the only menaquinone was MK-7. Diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine were the major polar lipids, along with an unknown phospholipid and two unknown lipids. The peptidoglycan type was A4α, with an interpeptide bridge of l-Lys-d-Asp. DNA-DNA hybridization values between strain 2RL3-2T and closely related Lysinibacillus species were below 43±4%. Therefore, based on phenotypic, chemotaxonomic, and phylogenetic characteristics, it was determined that strain 2RL3-2T represents a novel species of the genus Lysinibacillus, for which the name Lysinibacillus chungkukjangi sp. nov. is proposed. The type strain is 2RL3-2T (=KACC 16626T =NBRC 108948T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, I., Yokota, A., Yamazoe, A., and Fujiwara, T. 2007. Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol.57, 1117–1125.

    Article  PubMed  CAS  Google Scholar 

  • Breznak, J.A. and Costilow, R.N. 1994. Physicochemical factors in growth, Methods for General and Molecular Bacteriology, pp. 137–154. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.). American Society for Microbiology, Washington, D.C., USA.

  • Choi, J.M., Yi, N.R., Seo, K.C., Han, J.S., Song, Y.O., and Cho, E.J. 2008. Protective effect of Chungkukjang from Sunchang province against cellular oxidative damage. J. Food Sci. Nutr.13, 90–94.

    Article  Google Scholar 

  • Chun, J., Lee, J.H., Jung, Y., Kim, M., Kim, S., Kim, B.K., and Lim, Y.W. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol.57, 2259–2261.

    Article  PubMed  CAS  Google Scholar 

  • Coorevits, A., Dinsdale, A.E., Heyrman, J., Schumann, P., Van Landschoot, A., Logan, N.A., and De Vos, P. 2012. Lysinibacillus macroides sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol.62, 1121–1127.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool.20, 406–416.

    Article  Google Scholar 

  • Glazunova, O.O., Raoult, D., and Roux, V. 2006. Bacillus massiliensis sp. nov., isolated from cerebrospinal fluid. Int. J. Syst. Evol. Microbiol.56, 1485–1488.

    Article  PubMed  CAS  Google Scholar 

  • Hamada, M., Iino, T., Iwami, T., Harayama, S., Tamura, T., and Suzuki, K. 2010. Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., two new members of the family Dermatophilaceae, and reclassification of Dermatophilus chelonae (Masters et al. 1995) as Austwickia chelonae gen. nov., comb. nov. J. Gen. Appl. Microbiol.56, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Jung, M.Y., Kim, J.S., Paek, W.K., Styrak, I., Park, I.S., Sin, Y., Paek, J., Park, K.A., Kim, H., Kim, H.L., Tindall, B.J., and Chang, Y.H. 2012. Description of Lysinibacillus sinduriensis sp. nov., and transfer of Bacillus massiliensis and Bacillus odysseyi to Lysinibacillus as Lysinibacillus massiliensis comb. nov. and Lysinibacillus odysseyi comb. nov. with emended description of the genus. Int. J. Syst. Evol. Microbiol.62, 2347–2355.

    Article  PubMed  CAS  Google Scholar 

  • La Duc, M.T., Satomi, M., and Venkateswaran, K. 2004. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft. Int. J. Syst. Evol. Microbiol. 54, 195–201.

    Article  PubMed  Google Scholar 

  • Lee, C.S., Jung, Y.T., Park, S., Oh, T.K., and Yoon, J.H. 2010. Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int. J. Syst. Evol. Microbiol.60, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.Y., Park, S.Y., Jung, K.O., Park, K.Y., and Kim, S.D. 2005. Quality and functional characteristics of Chungkukjang prepared with various Bacillus sp. isolated from traditional Chungkukjang. J. Food Sci.70, M195–M196.

    Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol.39, 159–167.

    Article  CAS  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. Anintegrated procedure for the extraction of bacterial isoprenoid quinones and polarlipids. J. Microbiol. Methods2, 233–241.

    Article  CAS  Google Scholar 

  • Miwa, H., Ahmed, I., Yokota, A., and Fujiwara, T. 2009. Lysinibacillus parviboronicapiens sp. nov., a low-boron-containing bacterium isolated from soil. Int. J. Syst. Evol. Microbiol.59, 1427–1432.

    Article  PubMed  CAS  Google Scholar 

  • Nozawa, Y., Sakai, N., Arai, K., Kawasaki, Y., and Harada, K. 2007. Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey’s method. J. Microbiol. Methods70, 306–311.

    Article  PubMed  CAS  Google Scholar 

  • Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glöckner, F.O. 2007. Silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res.35, 7188–7196.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.

    PubMed  CAS  Google Scholar 

  • Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev.36, 407–477.

    PubMed  CAS  Google Scholar 

  • Schumann, P. 2011. Peptidoglycan Structure. In Rainey, F. and Oren, A. (eds.) Taxonomy of Prokaryotes, vol. 38, pp. 101–129. Methods in Microbiology. Academic Press, London, UK.

    Chapter  Google Scholar 

  • Seldin, L. and Dubnau, D. 1985. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int. J. Syst. Bacteriol.35, 151–154.

    Article  CAS  Google Scholar 

  • Seo, H.R., Kim, J.Y., Kim, J.H., and Park, K.Y. 2009. Identification of Bacillus cereus in a Chungkukjang that showed high anticancer effects against AGS human gastric adenocarcinoma cells. J. Med. Food12, 1274–1280.

    Article  PubMed  CAS  Google Scholar 

  • Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. In Gerhart, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.) Methods for General and Molecular Bacteriology, pp. 607–654. American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., andet al. 1987. Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int. J. Syst. Bacteriol.37, 463–464.

    Article  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol.173, 697–703.

    PubMed  CAS  Google Scholar 

  • Yang, L.L., Huang, Y., Liu, J., Ma, L., Mo, M.H., Li, W.J., and Yang, F.X. 2012. Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie van Leeuwenhoek102, 53–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Wo Kwon.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Footnote. The GenBank accession no. for the 16S rRNA gene sequence of strain 2RL3-2T is JX217747.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Jang, YH., Hamada, M. et al. Lysinibacillus chungkukjangi sp. nov., isolated from Chungkukjang, Korean fermented soybean food. J Microbiol. 51, 400–404 (2013). https://doi.org/10.1007/s12275-013-2664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2664-1

Keywords

Navigation