Skip to main content
Log in

Identification and characterization of an anti-fungi Fusarium oxysporum f. sp. cucumerium protease from the Bacillus subtilis strain N7

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A newly discovered alkaline antifungal protease named P6 from Bacillus subtilis N7 was purified and partially characterized. B. subtilis N7 culture filtrates were purified by 30–60% (NH4)2SO4 precipitation, anion-exchange chromatography and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a single band of 41.38 kDa. Peptide sequence of protease P6 was determined using a 4800 Plus MALDI TOF/TOF™ Analyzer System. Self-Formed Adaptor PCR (SEFA-PCR) was used to amplify the 1,149 bp open read frame of P6. Dimensional structure prediction using Automatic Modeling Mode software showed that the protease P6 consisted of two β-barrel domains. Purified P6 strongly inhibited spore and mycelium growth of Fusarium oxysporum f. sp. cucumerium (FOC) by causing hypha lysis when the concentration was 25 μg/ml. Characterization of the purified protease indicated that it had substrate specificity for gelatin and was highly active at pH 8.0–10.6 and 70°C. The P6 protease was inhibited by EDTA (2 mmol/L), phenyl methyl sulfonyl fluoride (PMSF, 1 mmol/L), Na+, Fe3+, Cu2+, Mg2+ (5 mmol/L each) and H2O2 (2%, v/v). However, protease activity was activated by Ca2+, K+, Mn2+ (5 mmol/L each), mercaptoethanol (2%, v/v) and Tween 80 (1%, v/v). In additon, activity was also affected by organic solvents such as acetone, normal butanol and ethanol, but not hexane (25%, v/v each).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adinarayana, K., Ellaiah, P., and Prasad, D.S. 2003. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis pe-11. AAPS PharmSciTech. 4, E56.

    Article  PubMed  Google Scholar 

  • Becher, D., Buttner, K., Moche, M., Hessling, B., and Hecker, M. 2011. From the genome sequence to the protein inventory of Bacillus subtilis. Proteomics 11, 2971–2980.

    Article  PubMed  CAS  Google Scholar 

  • Bhaskar, N., Sudeepa, E., Rashmi, H., and Tamil Selvi, A. 2007. Partial purification and characterization of protease of Bacillus proteolyticus cfr3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98, 2758–2764.

    Article  PubMed  CAS  Google Scholar 

  • Borisova, S.A., Circello, B.T., Zhang, J.K., van der Donk, W.A., and Metcalf, W.W. 2010. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC 6633. Chem. Biol. 17, 28–37.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Broekaert, W.F., Terras, F.R.G., Cammue, B., and Vanderleyden, J. 1990. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 69, 55–59.

    Article  CAS  Google Scholar 

  • Chen, X., Li, J., Sun, Q., Tong, Y., and Xu, J. 2010. Isolation, purification and characterization of antifungal protein from rice endophytic bacterim Bacillus subtilis G87. Acta Microbiol. Sinica 50, 1353.

    CAS  Google Scholar 

  • Cho, K.M., Math, R.K., Hong, S.Y., Asraful Islam, S.M., Mandanna, D.K., Cho, J.J., Yun, M.G., Kim, J.M., and Yun, H.D. 2009. Iturin produced by Bacillus pumilus Hy1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control. 20, 402–406.

    Article  CAS  Google Scholar 

  • Chung, S., Kong, H., Buyer, J.S., Lakshman, D.K., Lydon, J., Kim, S.D., and Roberts, D.P. 2008. Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80, 115–123.

    Article  PubMed  CAS  Google Scholar 

  • Das, S., Mishra, B., Gill, K., Ashraf, M.S., Singh, A.K., Sinha, M., Sharma, S., Xess, I., Dalal, K., Singh, T.P., and et al. 2011. Isolation and characterization of novel protein with anti-fungal and anti-inflammatory properties from aloe vera leaf gel. Int. J. Biol. Macromol. 48, 38–43.

    Article  PubMed  CAS  Google Scholar 

  • Earl, A.M., Losick, R., and Kolter, R. 2008. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16, 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Guangrong, H., Tiejing, Y., Po, H., and Jiaxing, J. 2010. Purification and characterization of a protease from thermophilic Bacillus strain HS08. Afr. J. Biotechnol. 5, 2433–2438.

    Google Scholar 

  • Gupta, R., Beg, Q., and Lorenz, P. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15–32.

    Article  PubMed  CAS  Google Scholar 

  • Harwood, C.R. 1992. Bacillus subtilis and its relatives: Molecular biological and industrial workhorses. Trends Biotechnol. 10, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Hedstrom, L. 2002. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4524.

    Article  PubMed  CAS  Google Scholar 

  • Kim, P. and Chung, K.C. 2004. Production of an antifungal protein for control of colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Kugler, M., Loeffler, W., Rapp, C., Kern, A., and Jung, G. 1990. Rhizocticin a, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: Biological properties. Arch. Microbiol. 153, 276–281.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Yang, Q., Zhao, L.H., Zhang, S.M., Wang, Y.X., and Zhao, X.Y. 2009. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29. J. Zhejiang Univ. Sci. B. 10, 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Chen, Z., Ng, T.B., Zhang, J., Zhou, M., Song, F., and Lu, F. 2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28, 553–559.

    Article  PubMed  Google Scholar 

  • Liu, B., Huang, L., Buchenauer, H., and Kang, Z. 2010. Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pestic. Biochem. Physiol. 98, 305–311.

    Article  CAS  Google Scholar 

  • Manjula, K., Kishore, G.K., and Podile, A. 2004. Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Can. J. Microbiol. 50, 737–744.

    Article  PubMed  CAS  Google Scholar 

  • Mizumoto, S. and Shoda, M. 2007. Medium optimization of antifungal lipopeptide, iturin a, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Appl. Microbiol. Biotechnol. 76, 101–108.

    Article  PubMed  CAS  Google Scholar 

  • Nilegaonkar, S., Zambare, V., Kanekar, P., Dhakephalkar, P., and Sarnaik, S. 2007. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour. Technol. 98, 1238–1245.

    Article  PubMed  CAS  Google Scholar 

  • Oberoi, R., Beg, Q.K., Puri, S., Saxena, R., and Gupta, R. 2001. Characterization and wash performance analysis of an SDS-stable alkaline protease from a Bacillus sp. World J. Microbiol. Biotechnol. 17, 493–497.

    Article  CAS  Google Scholar 

  • Oman, T.J., Boettcher, J.M., Wang, H., Okalibe, X.N., and van der Donk, W.A. 2011. Sublancin is not a lantibiotic but an S-linked glycopeptide. Nature Chem. Biol. 7, 78–80.

    Article  CAS  Google Scholar 

  • Özcengiz, G. and Alaeddinoglu, N. 1991. Bacilysin production by Bacillus subtilis: effects of bacilysin, pH and temperature. Folia Microbiol. (Praha) 36, 522–526.

    Article  Google Scholar 

  • Perona, J.J. and Craik, C.S. 2008. Structural basis of substrate specificity in the serine proteases. Protein Sci. 4, 337–360.

    Article  Google Scholar 

  • Pillay, V., Polya, G.M., and Spangenberg, G.C. 2011. Optimisation of an in vitro antifungal protein assay for the screening of potential antifungal proteins against Leptosphaeria maculans. J. Microbiol. Methods 84, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Rapp, C., Jung, G., Kugler, M., and Loeffler, W. 1988. Rhizocticins-new phosphono-oligopeptides with antifungal activity. Liebigs Annalen der Chemie 1988, 655–661.

    Article  Google Scholar 

  • Reddy, L.V.A., Wee, Y.-J., and Ryu, H.-W. 2008. Purification and characterization of an organic solvent and detergent-tolerant novel protease produced by Bacillus sp. RKY3. J. Chem. Technol. Biotechnol. 83, 1526–1533.

    Article  CAS  Google Scholar 

  • Riffel, A., Ortolan, S., and Brandelli, A. 2003. De-hairing activity of extracellular proteases produced by keratinolytic bacteria. J. Chem. Technol. Biotechnol. 855-859.

  • Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56, 845–857.

    Article  PubMed  CAS  Google Scholar 

  • Toure, Y., Ongena, M., Jacques, P., Guiro, A., and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96, 1151–1160.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., He, J., Cui, Z., and Li, S. 2007. Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl. Environ. Microbiol. 73, 5048–5051.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. and Ng, T.B. 2005. An antifungal protein from ginger rhizomes. Biochem. Biophys. Res. Commun. 336, 100–104.

    Article  PubMed  CAS  Google Scholar 

  • Xie, D., Peng, J., Wang, J., Hu, J., and Wang, Y. 1998. Purification and properties of antifungal protein x98iii from Bacillus subtilis. Acta Microbiol. Sinica 38, 13.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Sun, L., Zhu, Z. et al. Identification and characterization of an anti-fungi Fusarium oxysporum f. sp. cucumerium protease from the Bacillus subtilis strain N7. J Microbiol. 51, 359–366 (2013). https://doi.org/10.1007/s12275-013-2627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2627-6

Keywords

Navigation