Skip to main content
Log in

Influence of Acetobacter pasteurianus SKU1108 aspS gene expression on Escherichia coli morphology

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aspS gene encoding Aspartyl-tRNA synthetase (AspRS) from a thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, has been cloned and characterized. The open reading frame (ORF) of the aspS gene consists of 1,788 bp, encoding 595 amino acid residues. The highly conserved Gly-Val-Asp-Arg ATP binding motif (motif 3) is located at the position 537–540 in the C-terminus. Deletion analysis of the aspS gene upstream region suggested that the promoter is around 173 bp upstream from the ATG initiation codon. Interestingly, transformation with the plasmids pGEM-T138, pUC138, and pCM138 synthesizing 138 amino acid C-terminal fragments of AspRS, that carry the ATP binding domain, caused E. coli cell lengthening at 37 and 42°C. Moreover, E. coli harboring pUC595 (synthesizing all 595 amino acids) and a disordered aspS gene in pGEM-T138 had normal rod shapes. The normal rod shape was observed in E. coli harboring pD539V following site-directed mutagenesis of the ATP binding domain. We propose that over-production of truncated C-terminal peptides of AspRS may cause sequestration of intracellular ATP in E. coli, leaving less ATP for cell division or shaping cell morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ador, L., Camasses, A., Erbs, P., Cavarelli, J., Moras, D., Gangloff, J., and Eriani, G. 1999. Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth. J. Mol. Biol. 288, 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Campanacci, V., Dubois, Y.D., Becker, D.H., Kern, D., Spinelli, S., Valencia, C., Pagot, F., Salomoni, A., Grisel, S., Vincentelli, R., and et al. 2004. The Escherichia coli yadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. J. Mol. Biol. 337, 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M., Mitschler, A., Martin, F., Gangloff, J., Thierry, J.C., and Moras, D. 1994. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 15, 327–337.

    Google Scholar 

  • Eriani, G., Dirheimer, G., and Gangloff, J. 1990. Aspartyl-tRNA synthetase from Escherichia coli: cloning and characterisation of the gene, homologies of its translated amino acid sequence with asparaginyl- and lysyl-tRNA synthetases. Nucleic Acids Res. 18, 7109–7118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer, B., Rummel, G., Aldridge, P., and Jenal, U. 2002. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol. Microbiol. 44, 461–478.

    Article  CAS  PubMed  Google Scholar 

  • Frugier, M., Ryckelynck, M., and Giegé, R. 2005. tRNA-balanced expression of a eukaryal aminoacyl-tRNA synthetase by an mRNA-mediated pathway. EMBO Rep. 6, 860–865.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibba, M. and Söll, D. 2000. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F., Sharples, G.J., Lloyd, R.G., Eiler, S., Moras, D., Gangloff, J., and Eriani, G. 1997. Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant. J. Bacteriol. 179, 3691–3696.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marx, C.J. and Lidstrom, M.E. 2001. Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147, 2065–2075.

    CAS  PubMed  Google Scholar 

  • Masud, U., Matsushita, K., and Theeragool, G. 2011. Molecular cloning and characterization of two inducible NAD+-adh genes encoding NAD+-dependent alcohol dehydrogenases from Acetobacter pasteurianus SKU1108. J. Biosci. Bioeng. 5, 422–431.

    Article  Google Scholar 

  • Matsutani, M., Hirakawa, H., Nishikura, M., Soemphol, W., Ibnaof Ali, I.A., Yakushi, T., and Matsushita, K. 2011. Increased number of Arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100. Biochem. Biophys. Res. Commun. 409, 120–124.

    Article  CAS  PubMed  Google Scholar 

  • Matsutani, M., Hirakawa, H., Saichana, N., Soemphol, W., Yakushi, T., and Matsushita, K. 2012. Genome-wide phylogenetic analysis of differences in thermotolerance among closely related Acetobacter pasteurianus strains. Microbiology 158, 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Metlitskaya, A., Kazakov, T., Kommer, A., Pavlova, O., Praetorius-Ibba, M., Ibba, M., Krasheninnikov, I., Klob, V., Khmel, I., and Severinov, K. 2006. Aspartly-tRNA synthetase is the target of peptide nucleotide antibiotic microcin C. J. Biol. Chem. 281, 18033–18042.

    Article  CAS  PubMed  Google Scholar 

  • Miller, J.H. 1972. Experiments in molecular genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.

    Google Scholar 

  • Saeki, A., Theeragool, G., Matsushita, K., Toyama, H., Lothong, N., and Adachi, O. 1997. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci. Biotechnol. Biochem. 61, 138–145.

    Article  CAS  Google Scholar 

  • Salazar, C.J., Ambrogelly, A., Crain, F.P., McCloskey, A.J., and Söll, D. 2004. A truncated aminoacyl-tRNA synthetase modifies RNA. Proc. Natl. Acad. Sci. USA 101, 7536–7541.

    Article  CAS  PubMed  Google Scholar 

  • Sharples, G.J. and Lloyd, R.G. 1991. Location of a mutation in the aspartyl-tRNA synthetase gene of E. coli K-12. Mutat. Res. 264, 93–96.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, D. and Simonson, T. 2006. Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long-range electrostatic interactions. J. Biol. Chem. 281, 23792–23803.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, T., Ayabe, Y., Yasunaga, M., Usami, Y., Habe, H., Nojiri, H., and Omori, T. 2003. Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp. strain 12S. Microbiology 149, 431–444.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjana Theeragool.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasanapak, K., Masud-Tippayasak, U., Matsushita, K. et al. Influence of Acetobacter pasteurianus SKU1108 aspS gene expression on Escherichia coli morphology. J Microbiol. 51, 783–790 (2013). https://doi.org/10.1007/s12275-013-2619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2619-6

Keywords

Navigation