Skip to main content
Log in

Beginning to understand the role of sugar carriers in Colletotrichum lindemuthianum: the function of the gene mfs1

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungi of the Colletotrichum genus are among the most prominent phytopathogens that cause diseases with a considerable economic impact, such as anthracnose. The hemibiotrophic fungus Colletotrichum lindemuthianum (teleomorph Glomerella cingulata f. sp. phaseoli) is the causal agent of the anthracnose of the common bean; and similarly to other phytopathogens, it uses multiple strategies to gain access to different carbon sources from its host. In this study, we examine mfs1, a newly identified C. lindemuthianum hexose transporter. The mfs1 gene is expressed only during the necrotrophic phase of the fungus’ interaction within the plant and allows it to utilize the available sugars during this phase. The deletion of mfs1 gene resulted in differential growth of the fungus in a medium that contained glucose, mannose or fructose as the only carbon source. This study is the first to describe a hexose transporter in the hemibiotrophic pathogen C. lindemuthianum and to demonstrate the central role of this protein in capturing carbon sources during the necrotrophic development of the plant/pathogen interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–33902.

    Article  PubMed  CAS  Google Scholar 

  • Benton, W.D. and Davis, R.W. 1977. Screening of Xgt recombinant clones by hybridization to single plaques in situ. Science 196, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Boles, E. and Hollenberg, C.P. 1997. The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21, 85–111.

    Article  PubMed  CAS  Google Scholar 

  • Carpita, N.C., Defernez, M., Findlay, K., Wells, B., Shoue, D.A., Catchpole, G., Wilson, R.H., and McCann, M.C. 2001. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 127, 551–565.

    Article  PubMed  CAS  Google Scholar 

  • Catlett, N.L., Lee, B.N., Yoder, O.C., and Turgeon, B.G. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Newsl. 50, 9–11.

    Google Scholar 

  • Del Sorbo, G., Schoonbeek, H.J., and De Waard, M.A. 2000. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet. Biol. 30, 1–15.

    Article  PubMed  Google Scholar 

  • Doehlemann, G., Molitor, F., and Hahn, M. 2005. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet. Biol. 42, 601–610.

    Article  PubMed  CAS  Google Scholar 

  • Dufresne, M., Bailey, J.A., Michel, D., and Langin, T. 1998. clk1, a serine/threonine protein kinase encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean. Mol. Plant-Microbe Interact. 11, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Edginton, L.V., Khew, K.L., and Barron, G.L. 1971. Fungitoxic spectrum of benzimidazoles compounds. Phytopathology 61, 42–44.

    Article  Google Scholar 

  • Fang, W. and Leger, R.J. 2010. Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol. 154, 1549–1557.

    Article  PubMed  CAS  Google Scholar 

  • Forment, J.A., Flipphi, M., Ramón, D., Ventura, L., and Maccabe, A.P. 2006. Identification of the mstE gene encoding a glucose-inducible, low affinity glucose transporter in Aspergillus nidulans. J. Biol. Chem. 28, 8339–8346.

    Article  Google Scholar 

  • Hayashi, K., Schoonbeek, H., and De Waard, M.A. 2002. Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demethylation inhibitor fungicides. Pestic. Biochem. Physiol. 73, 110–121.

    Article  CAS  Google Scholar 

  • Herbert, C., O’Connell, R., Gaulin, E., Salesses, V., Esquerre-Tugaye, M.T., and Dumas, B. 2004. Production of a cell wall associated endopolygalacturonase by Colletotrichum lindemuthianum and pectin degradation during bean infection. Fungal Genet. Biol. 41, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Krijger, J.J., Horbach, R., Behr, M., Schweizer, P., Deising, H.B., and Wirsel, S.G. 2008. The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Mol. Plant-Microbe Interact. 21, 1325–1336.

    Article  PubMed  CAS  Google Scholar 

  • Law, C.J., Maloney, P.C., and Wang, D. 2008. Ins and outs major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305.

    Article  PubMed  CAS  Google Scholar 

  • Leandro, J.M., Fonseca, C., and Gonçalves, P. 2009. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 99, 511–525.

    Article  PubMed  CAS  Google Scholar 

  • Lévesque, C.A., Brouwer, H., Cano, L., Hamilton, J.P., Holt, C., Huitema, E., Raffaele, S., Robideau, G.P., Thines, M., Win, J., and et al. 2010. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 11, 1–22.

    Article  Google Scholar 

  • Lewis, K. 1994. Multidrug resistance pumps in bacteria: Variations on a theme. Trends Biochem. Sci. 19, 119–123.

    Article  PubMed  CAS  Google Scholar 

  • Lingner, U., Münch, S., Deising, H.B., and Sauer, N. 2011. Hexose transporters of a hemibiotrophic plant pathogen: Functional variations and regulatory differences at different stages of infection. J. Biol. Chem. 286, 20913–20922.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. Methods 5, 402–408.

    Article  Google Scholar 

  • Madi, L., McBride, S.A., Bailey, L.A., and Ebbole, D.J. 1997. rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146, 499–508.

    PubMed  CAS  Google Scholar 

  • Maiden, M.C.J., Davis, E.O., Baldwin, S.A., Moore, D.C.M., and Henderson, P.J.F. 1987. Mammalian and bacterial sugar transport proteins are homologous. Nature 325, 641–643.

    Article  PubMed  CAS  Google Scholar 

  • Münch, S., Lingner, U., Floss, D.S., Ludwig, N., Sauer, N., and Deising, H.B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165, 41–51.

    Article  PubMed  Google Scholar 

  • Nagata, T., Tizumi, S., Satoh, K., and Kikuchi, S. 2008. Comparative molecular biological analysis of membrane transport genes in organisms. Plant Mol. Biol. 66, 565–585.

    Article  PubMed  CAS  Google Scholar 

  • Nehls, U., Wiese, J., Guttenberg, M., and Hampp, R. 1998. Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol. Plant-Microbe Interact. 11, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, M.C., Araújo, E.F., and Queiroz, M.V. 2006. Clonagem e sequenciamento de fragmentos aleatoriamente amplificados em Colletotrichum lindemuthianum. In: XV Simpósio de Inicia..o Científica da Universidade Federal de Vi.osa Resumo do XV Simpósio de Inicia..o Científica da UFV.

  • O’Connell, R.J., Thon, M.R., Hacquard, S., Amyotte, S.G., Kleemann, J., Torres, M.F., Damm, U., Buiate, E.A., Epstein, L., Alkan, N., and et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genet. 44, 1060–1065.

    Article  PubMed  Google Scholar 

  • Page, R.D.M. 1996. Treeview: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358.

    PubMed  CAS  Google Scholar 

  • Pao, S.S., Paulsen, I.T., and Saier, M.H. 1998. Major facilitador superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34.

    PubMed  CAS  Google Scholar 

  • Paulsen, I.T. and Skurray, R.A. 1996. Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes — an analysis. Gene 132, 155–166.

    Article  Google Scholar 

  • Perfect, S.E., Hughes, H.B., O’Connell, R.J., and Green, J.R. 1999. Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27, 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Pontecorvo, G., Roper, J.A., Hemmons, L.M., Macdonald, K.D., and Bufton, A.W.J. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5, 141–238.

    Article  PubMed  CAS  Google Scholar 

  • Punt, P.J., Oliver, R.P., Dingemanse, M.A., Pouwels, P.H., and Van Den Hondel, C.A. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Rava, C.A., Purchio, A.F., and Sartorato, A. 1994. Caracterizção de patótipos de Colletotrichum lindemuthianum que ocorrem em algumas regi.es produtoras de feijão comum. Fitopatol. Bras. 19, 167–172.

    Google Scholar 

  • Redman, R.S. and Rodriguez, R.J. 1994. Factors affecting the efficient transformation of Colletotrichum species. Exp. Mycol. 18, 230–246.

    Article  CAS  Google Scholar 

  • Reifenberger, E., Freidel, K., and Ciriacy, M. 1995. Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol. Microbiol. 16, 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J. and Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, N.Y., USA.

    Google Scholar 

  • Sartorato, A. and Rava, C.A. 1994. Mancha angular. In Sartorato, A. and Rava, C.A. (eds.). Principais doen.as do feijoero comum e seu controle, pp. 41–68. EMBRAPA, SPI, Brasilia, Brazil.

    Google Scholar 

  • Schüssler, A., Martin, H., Cohen, D., Fitz, M., and Wipf, D. 2006. Characterization of a carbohydrate transporter from symbiotic glomeromycota fungi. Nature 444, 933–936.

    Article  PubMed  Google Scholar 

  • Soares, M.A. 2007. Genes determinantes de patogenicidade e virulência e análise parcial do genoma mitocondrial de Colletotrichum lindemuthianum, agente causal da antracnose do feijoeiro comum. Dissertação (Doutorado em Microbiologia Agrícola) — Universidade Federal de Vi.osa, Viçosa, MG, 210.

  • Specht, C.A., DiRusso, C.C., Novotny, C.P., and Ullrich, R.C. 1982. A method for extracting high molecular-weight deoxyribonucleic acid from fungi. Anal. Biochem. 119, 158–163.

    Article  PubMed  CAS  Google Scholar 

  • Stergiopoulos, I., Gielkens, M.M., Goodall, S.D., Venema, K., and Waard, M.A. 2002. Molecular cloning and characterization of three new ABC transporter encoding genes from the wheat pathogen Mycosphaerella graminicola. Gene 289, 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Swo Vord, D.L. 2002. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts, USA.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg, M.A., Albang, R., Albermann, K., Badger, J.H., Daran, J.M., Driessen, A.J.M., Estrada, C.G., Fedorova, N.D., Harris, D.M., Heijne, W.H.M., and et al. 2008. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 26, 1161–1168.

    Article  PubMed  CAS  Google Scholar 

  • Vardy, E., Arkin, I.T., Gottschalk, K.E., Kaback, H.R., and Schuldiner, S. 2004. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci. 13, 1832–1840.

    Article  PubMed  CAS  Google Scholar 

  • Voegele, R.T., Struck, C., Hahn, M., and Mendgen, K. 2001. The role of haustoria in sugar uptake during infection of broad bean by the rust fungus Uromyces fabae. Proc. Natl. Acad. Sci. USA 98, 8133–8138.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, R., Wippel, K., Goos, S., Kämper, J., and Sauer, N. 2010. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol. 8, 1–10.

    Article  Google Scholar 

  • Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C.P., and Boles, E. 1999. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett. 464, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Wijesundera, R.L.C., Bailey, J.A., Byrde, R.J.W., and Fielding, A.H. 1989. Cell wall degrading enzymes of Colletotrichum lindemuthianum: their role in the development of bean anthracnose. Physiol. Mol. Plant Pathol. 34, 403–413.

    Article  CAS  Google Scholar 

  • Yin, Y., He, X., Szewczyk, P., Nguyen, T., and Chang, G. 2006. Structure of the multidrug transporter EmrD from Escherichia coli. Science 312, 741–744.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Mara Soares Bazzolli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, M.F., de Araújo dos Santos, C.M., de Araújo, E.F. et al. Beginning to understand the role of sugar carriers in Colletotrichum lindemuthianum: the function of the gene mfs1. J Microbiol. 51, 70–81 (2013). https://doi.org/10.1007/s12275-013-2393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-2393-5

Keywords

Navigation