Skip to main content
Log in

Protein-protein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Using yeast two-hybrid assay, we investigated protein-protein interactions between all orthologous histidine kinase (HK)/response regulator (RR) pairs of M. tuberculosis H37Rv and identified potential protein-protein interactions between a noncognate HK/RR pair, DosT/NarL. The protein interaction between DosT and NarL was verified by phosphotransfer reaction from DosT to NarL. Furthermore, we found that the DosT and DosS HKs, which share considerable sequence similarities to each other and form a two-component system with the DosR RR, have different cross-interaction capabilities with NarL: DosT interacted with NarL, while DosS did not. The dimerization domains of DosT and DosS were shown to be sufficient to confer specificity for DosR, and the different cross-interaction abilities of DosS and DosT with NarL were demonstrated to be attributable to variations in the amino acid sequences of the α2-helices of their dimerization domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bhattacharya, M., Biswas, A., and Das, A.K. 2010. Interaction analysis of TcrX/Y two component system from Mycobacterium tuberculosis. Biochimie92, 263–272.

    Article  PubMed  CAS  Google Scholar 

  • Casino, P., Rubio, V., and Marina, A. 2009. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell139, 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H.Y., Cho, H.J., Kim, Y.M., Oh, J.I., and Kang, B.S. 2009. Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J. Biol. Chem.284, 13057–13067.

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta, N., Kapur, V., Singh, K.K., Das, T.K., Sachdeva, S., Jyothisri, K., and Tyagi, J.S. 2000. Characterization of a twocomponent system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis.80, 141–159.

    Article  PubMed  CAS  Google Scholar 

  • Drepper, T., Wiethaus, J., Giaourakis, D., Gross, S., Schubert, B., Vogt, M., Wiencek, Y., McEwan, A.G., and Masepohl, B. 2006. Cross-talk towards the response regulator NtrC controlling nitrogen metabolism in Rhodobacter capsulatus. FEMS Microbiol. Lett.258, 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Dutta, R., Qin, L., and Inouye, M. 1999. Histidine kinases: diversity of domain organization. Mol. Microbiol.34, 633–640.

    Article  PubMed  CAS  Google Scholar 

  • Ewann, F., Locht, C., and Supply, P. 2004. Intracellular autoregulation of the Mycobacterium tuberculosis PrrA response regulator. Microbiology150, 241–246.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S., Sinha, A., and Sarkar, D. 2006. Transcriptional autoregulation by Mycobacterium tuberculosis PhoP involves recognition of novel direct repeat sequences in the regulatory region of the promoter. FEBS Lett.580, 5328–5338.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie, C. and Fink, G.R. 1991. Guide to yeast genetics and molecular biology. Methods Enzymology194, 1–932.

    Google Scholar 

  • Haydel, S.E., Benjamin, W.H.Jr., Dunlap, N.E., and Clark-Curtiss, J.E. 2002. Expression, autoregulation, and DNA binding properties of the Mycobacterium tuberculosis TrcR response regulator. J. Bacteriol.184, 2192–2203.

    Article  PubMed  CAS  Google Scholar 

  • Himpens, S., Locht, C., and Supply, P. 2000. Molecular characterization of the mycobacterial SenX3-RegX3 two-component system: evidence for autoregulation. Microbiology146Pt 12, 3091–3098.

    PubMed  CAS  Google Scholar 

  • Honaker, R.W., Leistikow, R.L., Bartek, I.L., and Voskuil, M.I. 2009. Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect. Immun.77, 3258–3263.

    Article  PubMed  CAS  Google Scholar 

  • Ioanoviciu, A., Yukl, E.T., Moenne-Loccoz, P., and de Montellano, P.R. 2007. DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry46, 4250–4260.

    Article  PubMed  CAS  Google Scholar 

  • James, P., Halladay, J., and Craig, E.A. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics144, 1425–1436.

    PubMed  CAS  Google Scholar 

  • Kim, M.J., Park, K.J., Ko, I.J., Kim, Y.M., and Oh, J.I. 2010. Different roles of DosS and DosT in the hypoxic adaptation of Mycobacteria. J. Bacteriol.192, 4868–4875.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, A., Toledo, J.C., Patel, R.P., Lancaster, J.R.Jr., and Steyn, A.J. 2007. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl. Acad. Sci. USA104, 11568–11573.

    Article  PubMed  CAS  Google Scholar 

  • Laub, M.T. and Goulian, M. 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet.41, 121–145.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.M., Cho, H.Y., Cho, H.J., Ko, I.J., Park, S.W., Baik, H.S., Oh, J.H., Eom, C.Y., Kim, Y.M., Kang, B.S., andet al. 2008. O2-and NO-sensing mechanism through the DevSR two-component system in Mycobacterium smegmatis. J. Bacteriol.190, 6795–6804.

    Article  PubMed  CAS  Google Scholar 

  • Marina, A., Waldburger, C.D., and Hendrickson, W.A. 2005. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. Embo J.24, 4247–4259.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Argudo, I., Martin-Nieto, J., Salinas, P., Maldonado, R., Drummond, M., and Contreras, A. 2001. Two-hybrid analysis of domain interactions involving NtrB and NtrC two-component regulators. Mol. Microbiol.40, 169–178.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Argudo, I., Salinas, P., Maldonado, R., and Contreras, A. 2002. Domain interactions on the ntr signal transduction pathway: two-hybrid analysis of mutant and truncated derivatives of histidine kinase NtrB. J. Bacteriol.184, 200–206.

    Article  PubMed  CAS  Google Scholar 

  • Morth, J.P., Gosmann, S., Nowak, E., and Tucker, P.A. 2005. A novel two-component system found in Mycobacterium tuberculosis. FEBS Lett.579, 4145–4148.

    Article  PubMed  CAS  Google Scholar 

  • Noriega, C.E., Lin, H.Y., Chen, L.L., Williams, S.B., and Stewart, V. 2010. Asymmetric cross-regulation between the nitrate-responsive NarX-NarL and NarQ-NarP two-component regulatory systems from Escherichia coli K-12. Mol. Microbiol.75, 394–412.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, N. and Newton, A. 2003. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J. Bacteriol.185, 4424–4431.

    Article  PubMed  CAS  Google Scholar 

  • Podust, L.M., Ioanoviciu, A., and Ortiz de Montellano, P.R. 2008. 2.3 A X-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Biochemistry47, 12523–12531.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D.M., Liao, R.P., Wisedchaisri, G., Hol, W.G., and Sherman, D.R. 2004. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J. Biol. Chem.279, 23082–23087.

    Article  PubMed  CAS  Google Scholar 

  • Saini, D.K., Malhotra, V., Dey, D., Pant, N., Das, T.K., and Tyagi, J.S. 2004a. DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology150, 865–875.

    Article  PubMed  CAS  Google Scholar 

  • Saini, D.K., Malhotra, V., and Tyagi, J.S. 2004b. Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett.565, 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA.

    Google Scholar 

  • Sardiwal, S., Kendall, S.L., Movahedzadeh, F., Rison, S.C., Stoker, N.G., and Djordjevic, S. 2005. A GAF domain in the hypoxia/NO-inducible Mycobacterium tuberculosis DosS protein binds haem. J. Mol. Biol.353, 929–936.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, S., Buchert, M., and Hovens, C.M. 1996. An in vitro assay of beta-galactosidase from yeast. Biotechniques20, 960–962.

    PubMed  CAS  Google Scholar 

  • Seok, J.S., Kaplan, S., and Oh, J.I. 2006. Interacting specificity of a histidine kinase and its cognate response regulator: the PrrBA system of Rhodobacter sphaeroides. Microbiology152, 2479–2490.

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava, R., Ghosh, A.K., and Das, A.K. 2007. Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system from Mycobacterium tuberculosis. FEBS Lett.581, 1903–1909.

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava, R., Ghosh, A.K., and Das, A.K. 2009. Intra- and intermolecular domain interactions among novel two-component system proteins coded by Rv0600c, Rv0601c and Rv0602c of Mycobacterium tuberculosis. Microbiology155, 772–779.

    Article  PubMed  CAS  Google Scholar 

  • Skerker, J.M., Perchuk, B.S., Siryaporn, A., Lubin, E.A., Ashenberg, O., Goulian, M., and Laub, M.T. 2008. Rewiring the specificity of two-component signal transduction systems. Cell133, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Sousa, E.H., Tuckerman, J.R., Gonzalez, G., and Gilles-Gonzalez, M.A. 2007. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci.16, 1708–1719.

    Article  PubMed  CAS  Google Scholar 

  • Stock, A.M., Robinson, V.L., and Goudreau, P.N. 2000. Two-component signal transduction. Annu. Rev. Biochem.69, 183–215.

    Article  PubMed  CAS  Google Scholar 

  • Tomomori, C., Tanaka, T., Dutta, R., Park, H., Saha, S.K., Zhu, Y., Ishima, R., Liu, D., Tong, K.I., Kurokawa, H., andet al. 1999. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat. Struct. Biol.6, 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Via, L.E., Curcic, R., Mudd, M.H., Dhandayuthapani, S., Ulmer, R.J., and Deretic, V. 1996. Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J. Bacteriol.178, 3314–3321.

    PubMed  CAS  Google Scholar 

  • West, A.H. and Stock, A.M. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci.26, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, S., Sugimoto, H., Kobayashi, M., Ohno, A., Nakamura, H., and Shiro, Y. 2009. Structure of PAS-linked histidine kinase and the response regulator complex. Structure17, 1333–1344.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R., and Ishihama, A. 2005. Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J. Biol. Chem.280, 1448–1456.

    Article  PubMed  CAS  Google Scholar 

  • Zahrt, T.C., Wozniak, C., Jones, D., and Trevett, A. 2003. Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect. Immun.71, 6962–6970.

    Article  PubMed  CAS  Google Scholar 

  • Zapf, J., Sen, U., Madhusudan, Hoch, J.A., and Varughese, K.I. 2000. A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure Fold Des.8, 851–862.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Il Oh.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HN., Jung, KE., Ko, IJ. et al. Protein-protein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv. J Microbiol. 50, 270–277 (2012). https://doi.org/10.1007/s12275-012-2050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2050-4

Keywords

Navigation