Skip to main content
Log in

Molecular cloning, purification, and characterization of a superoxide dismutase from a fast-growing Mycobacterium sp. Strain JC1 DSM 3803

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A cytosolic superoxide dismutase (SOD) was purified and characterized from a fast-growing Mycobacterium sp. strain JC1 DSM 3803 grown on methanol. The native molecular weight of the purified SOD was estimated to be 48 kDa. SDS-PAGE revealed a subunit of 23 kDa, indicating that the enzyme is a homodimer. The enzyme activity was inhibited by H2O2 and azide. The purified SOD contained 1.12 and 0.56 g-atom of Mn and Fe per mol of enzyme, respectively, suggesting that it may be a Fe/Mn cambialistic SOD. The apo-SOD reconstitution study revealed that Mn salts were more specific than Fe salts in the SOD activity. The gene encoding the SOD was identified from the JC1 cosmid genomic library by PCR screening protocol. The cloned gene, sodA, had an open reading frame (ORF) of 624 nt, encoding a protein with a calculated molecular weight of 22,930 Da and pi of 5.33. The deduced SodA sequence exhibited 97.6% identity with that of Mycobacterium fortuitum Mn-SOD and clustered with other mycobacterial Mn-SODs. A webtool analysis on the basis of SOD sequence and structure homologies predicted the SOD as a tetrameric Mn-SOD, suggesting that the protein is a dimeric Mn-SOD having tetramer-specific sequence and structure characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, P., D. Askgaard, L. Ljungqvist, J. Bennedsen, and I. Heron. 1991. Proteins released from Mycobacterium tuberculosis during growth. Infect. Immun. 59, 1905–1910.

    PubMed  CAS  Google Scholar 

  • Bannister, J.V., W.H. Bannister, and G. Rotilio. 1987. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22, 111–180.

    Article  PubMed  CAS  Google Scholar 

  • Beaman, B.L., S.M. Scates, S.E. Moring, R. Deem, and H.P. Misra. 1983. Purification and properties of a unique superoxide dismutase from Nocardia asteroides. J. Biol. Chem. 258, 91–96.

    PubMed  CAS  Google Scholar 

  • Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, W.F. Jr. and I. Fridovich. 1987. Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry 26, 1251–1257.

    Article  PubMed  CAS  Google Scholar 

  • Dussurget, O., G. Stewart, O. Neyrolles, P. Pescher, D. Young, and G. Marchal. 2001. Role of Mycobacterium tuberculosis copperzinc superoxide dismutase. Infect. Immun. 69, 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Escuyer, V., N. Haddad, C. Frehel, and P. Berche. 1996. Molecular characterization of a surface-exposed superoxide dismutase of Mycobacterium avium. Microb. Pathog. 20, 41–55.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64, 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, J.B. and D.E. Ohman. 1984. Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J. Bacteriol. 158, 1115–1121.

    PubMed  CAS  Google Scholar 

  • Imlay, J.A. 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S.K., Y.J. Jung, C.H. Kim, and C.Y. Song. 1998. Extracellular and cytosolic iron superoxide dismutase from Mycobacterium bovis BCG. Clin. Diagn. Lab. Immunol. 5, 784–789.

    PubMed  CAS  Google Scholar 

  • Kirby, T., J. Blum, I. Kahane, and I. Fridovich. 1980. Distinguishing between Mn-containing and Fe-containing superoxide dismutases in crude extracts of cells. Arch. Biochem. Biophys. 201, 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Kwasigroch, J.M., R. Wintjens, D. Gilis, and M. Rooman. 2008. SODa: an Mn/Fe superoxide dismutase prediction and design server. BMC Bioinformatics 9, 257.

    Article  PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H.I., J.H. Yoon, J.S. Nam, Y.M. Kim, and Y.T. Ro. 2010. Cloning, expression and characterization of the catalase-peroxidase (KatG) gene from a fast-growing Mycobacterium sp. strain JC1 DSM 3803. J. Biochem. 147, 511–522.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, B.K. and J.O. Falkinham III. 1986. Superoxide dismutase activity of Mycobacterium avium, M. intracellulare, and M. scrofulaceum. Infect. Immun. 53, 631–635.

    PubMed  CAS  Google Scholar 

  • Menéndez, M.C., P. Domenech, J. Prieto, and M.J. Garciá. 1995. Cloning and expression of the Mycobacterium fortuitum superoxide dismutase gene. FEMS Microbiol. Lett. 134, 273–278.

    Article  PubMed  Google Scholar 

  • Misra, H.P. and I. Fridovich. 1978. Inhibition of superoxide dismutases by azide. Arch. Biochem. Biophys. 189, 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.W., E.H. Hwang, H. Park, J.A. Kim, J. Heo, K.H. Lee, T. Song, and et al. 2003. Growth of mycobacteria on carbon monoxide and methanol. J. Bacteriol. 185, 142–147.

    Article  PubMed  CAS  Google Scholar 

  • Parker, M.W. and C.C. Blake. 1988. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 229, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Ro, Y.T., C.Y. Eom, T. Song, J.W. Cho, and Y.M. Kim. 1997a. Dihydroxyacetone synthase from a methanol-utilizing carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803. J. Bacteriol. 179, 6041–6047.

    PubMed  CAS  Google Scholar 

  • Ro, Y.T., E. Kim, and Y.M. Kim. 2000. Enzyme activities related to the methanol oxidation of Mycobacterium sp. strain JC1 DSM 3803. J. Microbiol. 38, 209–217.

    CAS  Google Scholar 

  • Ro, Y.T., H.I. Lee, E.J. Kim, J.H. Koo, E. Kim, and Y.M. Kim. 2003. Purification, characterization, and physiological response of a catalase-peroxidase in Mycobacterium sp. strain JC1 DSM 3803 grown on methanol. FEMS Microbiol. Lett. 226, 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Ro, Y.T., S.M. Scheffter, and J.L. Patterson. 1997b. Specific in vitro cleavage of a Leishmania virus capsid-RNA-dependent RNA polymerase polyprotein by a host cysteine-like protease. J. Virol. 71, 8983–8990.

    PubMed  CAS  Google Scholar 

  • Shin, K.J., Y.T. Ro, and Y.M. Kim. 1994. Catalases in Acinetobacter sp. strain JC1 DSM 3803 growing on glucose. Kor. J. Microbiol. 32, 155–162.

    CAS  Google Scholar 

  • Stallings, W.C., K.A. Pattridge, R.K. Strong, and M.L. Ludwig. 1984. Manganese and iron superoxide dismutases are structural homologs. J. Biol. Chem. 259, 10695–10699.

    PubMed  CAS  Google Scholar 

  • Thangaraj, H.S., F.I. Lamb, E.O. Davis, P.J. Jenner, L.H. Jeyakumar, and M.J. Colston. 1990. Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen. Infect. Immun. 58, 1937–1942.

    PubMed  CAS  Google Scholar 

  • Whittaker, J.W. 2003. The irony of manganese superoxide dismutase. Biochem. Soc. Trans. 31, 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, M.M. and J.W. Whittaker. 1999. Thermally triggered metal binding by recombinant Thermus thermophilus manganese superoxide dismutase, expressed as the apo-enzyme. J. Biol. Chem. 274, 34751–34757.

    Article  PubMed  CAS  Google Scholar 

  • Wintjens, R., C. Noël, A.C. May, D. Gerbod, F. Dufernez, M. Capron, E. Viscogliosi, and M. Rooman. 2004. Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J. Biol. Chem. 279, 9248–9254.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.H., J.J. Tsai-Wu, Y.T. Huang, C.Y. Lin, G.G. Lioua, and F.J. Lee. 1998. Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Lett. 439, 192–196.

    Article  PubMed  CAS  Google Scholar 

  • Youn, H.D., E.J. Kim, J.H. Roe, Y.C. Hah, and S.O. Kang. 1996. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 318, 889–896.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., R. Lathigra, T. Garbe, D. Catty, and D. Young. 1991. Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Mol. Microbiol. 5, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Zolg, J.W. and S. Philippi-Schulz. 1994. The superoxide dismutase gene, a target for detection and identification of mycobacteria by PCR. J. Clin. Microbiol. 32, 2801–2812.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Tae Ro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, JS., Yoon, JH., Lee, HI. et al. Molecular cloning, purification, and characterization of a superoxide dismutase from a fast-growing Mycobacterium sp. Strain JC1 DSM 3803. J Microbiol. 49, 399–406 (2011). https://doi.org/10.1007/s12275-011-1046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1046-9

Keywords

Navigation