Skip to main content
Log in

Predicting genetic traits and epitope analysis of apxIVA in Actinobacillus pleuropneumoniae

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Actinobacillus pleuropneumoniae causes a severe hemorrhagic pneumonia in pigs. Fifteen serotypes of A. pleuropneumoniae express four different Apx toxins that belong to the pore-forming repeats-in-toxin (RTX) group of toxins. ApxIV, which is conserved and up-regulated in vivo, could be an excellent candidate for the development of a protective cross-serotype immunity vaccine, and could aid in the differential diagnosis of diseases caused by A. pleuropneumoniae. We identified and sequenced apxIVA from A. pleuropneumoniae serotype 2 isolated in Korea (Kor-ApxIVA). The Kor-ApxIVA was closely related to Switzerland (AF021919), China (CP000687), and China (GQ332268), showing 98.6%, 98.4%, and 97.2% amino acid homology, respectively. The level of amino acid homology, however, was higher than the nucleotide homology. The structural characteristics of ApxIVA showed RTX proteins, including N-terminal hydrophobic domains, signature sequences for potential acylation sites, and repeated glycine-rich nonapeptides in the C-terminal region of the protein. Thirty glycine-rich nonapeptides with the consensus sequence, L/V-X-G-G-X-G-N/D-D-X, were found in the C-terminus of the Kor-ApxIVA. In addition, the Kor-ApxIVA was predicted for the linear B-cell epitopes and conserved domains with determined peptide sequences. This genetic analysis of the Kor-ApxIVA might be an important foundation for future biological and functional research on ApxIVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T.J. and J.I. MacInnes. 1997. Expression and phylogenetic relationships of a novel lacz homologue from Actinobacillus pleuropneumoniae. FEMS Microbiol. Lett. 152, 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Argos, P. 1988. A sequence motif in many polymerases. Nucleic Acids Res. 16, 9909–9916.

    Article  PubMed  CAS  Google Scholar 

  • Baltes, N. and G.F. Gerlach. 2004. Identification of genes transcribed by Actinobacillus pleuropneumoniae in necrotic porcine lung tissue by using selective capture of transcribed sequences. Infect. Immun. 72, 6711–6716.

    Article  PubMed  CAS  Google Scholar 

  • Baltes, N., I. Hennig-Pauka, and G.F. Gerlach. 2002. Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection. FEMS Microbiol. Lett. 209, 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Bandara, A.B., M.L. Lawrence, H.P. Veit, and T.J. Inzana. 2003. Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs. Infect. Immun. 71, 3320–3328.

    Article  PubMed  CAS  Google Scholar 

  • Blackall, P.J., H.L. Klaasen, H. van den Bosch, P. Kuhnert, and J. Frey. 2002. Proposal of a new serovar of Actinobacillus pleuropneumoniae: Serovar 15. Vet. Microbiol. 84, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Boekema, B.K., E.M. Kamp, M.A. Smits, H.E. Smith, and N. Stockhofe-Zurwieden. 2004. Both apxi and apxii of Actinobacillus pleuropneumoniae serotype 1 are necessary for full virulence. Vet. Microbiol. 100, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Bosse, J.T., H. Janson, B.J. Sheehan, A.J. Beddek, A.N. Rycroft, J.S. Kroll, and P.R. Langford. 2002. Actinobacillus pleuropneumoniae: Pathobiology and pathogenesis of infection. Microbes Infect. 4, 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Cho, W.S. and C. Chae. 2001. Expression of the apxiv gene in pigs naturally infected with Actinobacillus pleuropneumoniae. J. Comp. Pathol. 125, 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Coote, J.G. 1992. Structural and functional relationships among the rtx toxin determinants of Gram-negative bacteria. FEMS Microbiol. Rev. 8, 137–161.

    PubMed  CAS  Google Scholar 

  • Czuprynski, C.J. and R.A. Welch. 1995. Biological effects of rtx toxins: The possible role of lipopolysaccharide. Trends Microbiol. 3, 480–483.

    Article  PubMed  CAS  Google Scholar 

  • da Costa, M.M., C.S. Klein, R. Balestrin, A. Schrank, I.A. Piffer, S.C. da Silva, and I.S. Schrank. 2004. Evaluation of PCR based on gene apxiva associated with 16S rDNA sequencing for the identification of Actinobacillus pleuropneumoniae and related species. Curr. Microbiol. 48, 189–195.

    Article  PubMed  Google Scholar 

  • Deslandes, V., M. Denicourt, C. Girard, J. Harel, J.H. Nash, and M. Jacques. 2010. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs. BMC Genomics 11, 98.

    Article  PubMed  Google Scholar 

  • Deslandes, V., J.H. Nash, J. Harel, J.W. Coulton, and M. Jacques. 2007. Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions. BMC Genomics 8, 72.

    Article  PubMed  Google Scholar 

  • Dom, P., F. Haesebrouck, R. Ducatelle, and G. Charlier. 1994. In vivo association of Actinobacillus pleuropneumoniae serotype 2 with the respiratory epithelium of pigs. Infect. Immun. 62, 1262–1267.

    PubMed  CAS  Google Scholar 

  • Dreyfus, A., A. Schaller, S. Nivollet, R.P. Segers, M. Kobisch, L. Mieli, V. Soerensen, and et al. 2004. Use of recombinant apxiv in serodiagnosis of Actinobacillus pleuropneumoniae infections, development and prevalidation of the apxiv elisa. Vet. Microbiol. 99, 227–238.

    Article  PubMed  CAS  Google Scholar 

  • El-Manzalawy, Y., D. Dobbs, and V. Honavar. 2008. Predicting linear b-cell epitopes using string kernels. J. Mol. Recognit. 21, 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Felmlee, T., S. Pellett, E.Y. Lee, and R.A. Welch. 1985. Escherichia coli hemolysin is released extracellularly without cleavage of a signal peptide. J. Bacteriol. 163, 88–93.

    PubMed  CAS  Google Scholar 

  • Fenwick, B. and S. Henry. 1994. Porcine pleuropneumonia. J. Am. Vet. Med. Assoc. 204, 1334–1340.

    PubMed  CAS  Google Scholar 

  • Frey, J. 1995. Virulence in Actinobacillus pleuropneumoniae and rtx toxins. Trends Microbiol. 3, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, T.E., R.J. Shea, B.J. Thacker, and M.H. Mulks. 1999. Identification of in vivo induced genes in Actinobacillus pleuropneumoniae. Microb. Pathog. 27, 311–327.

    Article  PubMed  CAS  Google Scholar 

  • Glaser, P., H. Sakamoto, J. Bellalou, A. Ullmann, and A. Danchin. 1988. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J. 7, 3997–4004.

    PubMed  CAS  Google Scholar 

  • Gottschalk, M., A. Broes, K.R. Mittal, M. Kobisch, P. Kuhnert, A. Lebrun, and J. Frey. 2003. Non-pathogenic Actinobacillus isolates antigenically and biochemically similar to Actinobacillus pleuropneumoniae: A novel species? Vet. Microbiol. 92, 87–101.

    Article  PubMed  CAS  Google Scholar 

  • Haesebrouck, F., K. Chiers, I. Van Overbeke, and R. Ducatelle. 1997. Actinobacillus pleuropneumoniae infections in pigs: The role of virulence factors in pathogenesis and protection. Vet. Microbiol. 58, 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., R. Zhou, H. Fan, H. Dan, M. Chen, L. Yan, W. Bei, and H. Chen. 2006. Generation of monoclonal antibodies and epitope mapping of Apxiva of Actinobacillus pleuropneumoniae. Mol. Immunol. 43, 2130–2134.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, E.M., N. Stockhofe-Zurwieden, L.A. van Leengoed, and M.A. Smits. 1997. Endobronchial inoculation with apx toxins of Actinobacillus pleuropneumoniae leads to pleuropneumonia in pigs. Infect. Immun. 65, 4350–4354.

    PubMed  CAS  Google Scholar 

  • Lally, E.T., E.E. Golub, I.R. Kieba, N.S. Taichman, J. Rosenbloom, J.C. Rosenbloom, C.W. Gibson, and D.R. Demuth. 1989. Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene. Delineation of unique features and comparison to homologous toxins. J. Biol. Chem. 264, 15451–15456.

    PubMed  CAS  Google Scholar 

  • Lo, R.Y., C.A. Strathdee, and P.E. Shewen. 1987. Nucleotide sequence of the leukotoxin genes of Pasteurella haemolytica a1. Infect. Immun. 55, 1987–1996.

    PubMed  CAS  Google Scholar 

  • Lone, A.G., V. Deslandes, J.H. Nash, M. Jacques, and J.I. Macinnes. 2009. Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid. PLoS One 4, e6139.

    Article  PubMed  Google Scholar 

  • Negrete-Abascal, E., M.E. Reyes, R.M. Garcia, S. Vaca, J.A. Giron, O. Garcia, E. Zenteno, and M. De La Garza. 2003. Flagella and motility in Actinobacillus pleuropneumoniae. J. Bacteriol. 185, 664–668.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, R. 1988. Seroepidemiology of Actinobacillus pleuropneumoniae. Can. Vet. J. 29, 580–582.

    PubMed  CAS  Google Scholar 

  • Rayamajhi, N., S.J. Shin, S.G. Kang, D.Y. Lee, J.M. Ahn, and H.S. Yoo. 2005. Development and use of a multiplex polymerase chain reaction assay based on apx toxin genes for genotyping of Actinobacillus pleuropneumoniae isolates. J. Vet. Diagn. Invest. 17, 359–362.

    Article  PubMed  Google Scholar 

  • Saha, S. and G.P. Raghava. 2006. Prediction of continuous b-cell epitopes in an antigen using recurrent neural network. Proteins 65, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, A., S.P. Djordjevic, G.J. Eamens, W.A. Forbes, R. Kuhn, P. Kuhnert, M. Gottschalk, J. Nicolet, and J. Frey. 2001. Identification and detection of Actinobacillus pleuropneumoniae by PCR based on the gene apxiva. Vet. Microbiol. 79, 47–62.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, A., R. Kuhn, P. Kuhnert, J. Nicolet, T.J. Anderson, J.I. MacInnes, R.P. Segers, and J. Frey. 1999. Characterization of apxiva, a new rtx determinant of Actinobacillus pleuropneumoniae. Microbiology 145, 2105–2116.

    Article  PubMed  CAS  Google Scholar 

  • Sollner, J., R. Grohmann, R. Rapberger, P. Perco, A. Lukas, and B. Mayer. 2008. Analysis and prediction of protective continuous b-cell epitopes on pathogen proteins. Immun. Res. 4, 1.

    Article  Google Scholar 

  • Sthitmatee, N., T. Sirinarumitr, L. Makonkewkeyoon, T. Sakpuaram, and T. Tesaprateep. 2003. Identification of the Actinobacillus pleuropneumoniae serotype using PCR based-apx genes. Mol. Cell. Probes 17, 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Tascon, R.I., J.A. Vazquez-Boland, C.B. Gutierrez-Martin, I. Rodriguez-Barbosa, and E.F. Rodriguez-Ferri. 1994. The rtx haemolysins apxi and apxii are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: Evidence from mutational analysis. Mol. Microbiol. 14, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Turni, C. and P.J. Blackall. 2007. An evaluation of the apxiva based PCR-rea method for differentiation of Actinobacillus pleuropneumoniae. Vet. Microbiol. 121, 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Udeze, F.A., K.S. Latimer, and S. Kadis. 1987. Role of Haemophilus pleuropneumoniae lipopolysaccharide endotoxin in the pathogenesis of porcine Haemophilus pleuropneumonia. Am. J. Vet. Res. 48, 768–773.

    PubMed  CAS  Google Scholar 

  • Wagner, T.K. and M.H. Mulks. 2006. A subset of Actinobacillus pleuropneumoniae in vivo induced promoters respond to branchedchain amino acid limitation. FEMS Immunol. Med. Microbiol. 48, 192–204.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, T.K. and M.H. Mulks. 2007. Identification of the Actinobacillus pleuropneumoniae leucine-responsive regulatory protein and its involvement in the regulation of in vivo-induced genes. Infect. Immun. 75, 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Y. Wang, M. Shao, W. Si, H. Liu, Y. Chang, W. Peng, X. Kong, and S. Liu. 2009. Positive role for rapxivn in the immune protection of pigs against infection by Actinobacillus pleuropneumoniae. Vaccine 27, 5816–5821.

    Article  PubMed  CAS  Google Scholar 

  • Welch, R.A. 1991. Pore-forming cytolysins of Gram-negative bacteria. Mol. Microbiol. 5, 521–528.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Sang Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, MK., Cha, SB., Lee, WJ. et al. Predicting genetic traits and epitope analysis of apxIVA in Actinobacillus pleuropneumoniae . J Microbiol. 49, 462–468 (2011). https://doi.org/10.1007/s12275-011-0449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0449-y

Keywords

Navigation