Skip to main content
Log in

Formulated nano-liposomes for reversal of cisplatin resistance in NSCLC with nucleus-targeting peptide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cell membrane-engineered nano-delivery systems have evolved as a promising strategy to enhance drug bioavailability, offering an alternative for reversing drug resistance in cancer therapy. Herein, a formulated nano-liposome that fabricated by hybridizing cisplatin-resistant A549 cell line (A549/cis) cancer cell membrane and phospholipids for co-delivery of cisplatin and nuclear protein zeste homolog 2 (EZH2)-targeting peptide EIP103, referred to as cLCE, was developed. In vitro results indicated that the formulated nano-liposome can efficiently inhibit A549/cis cancer cell invasion and metastasis through the down-regulation of N-cadherin and vimentin proteins. Mechanistic studies demonstrated that the reduction of nerve growth factor receptor (NGFR) levels and the increase of peroxisome proliferator-activated receptor γ (PPARγ) levels achieved by EIP103 may contribute to the reversal of cisplatin resistance. In vivo results demonstrated that the encapsulation of both cisplatin and EIP103 within cLCE leads to increased intratumoral accumulation and prolonged survival in A549/cis cancer-bearing mice as compared to the individual drugs alone. This can be attributed to the enhanced tumor homing capability of cLCE achieved through the presence of inherited membrane proteins derived from A549/cis cells. Taken together, this study may provide a highly promising therapeutic strategy to improve clinical treatments for cisplatin-resistance non-small-cell lung cancer (NSCLC) as well as other malignant cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R. L.; Miller, K. D.; Wagle, N. S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J Clin. 2023, 73, 17–48

    Google Scholar 

  2. Testa, U.; Castelli, G.; Pelosi, E. Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells. Cancers 2018, 10, 248.

    Google Scholar 

  3. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424.

    Google Scholar 

  4. Chen, P. X.; Liu, Y. H.; Wen, Y. K.; Zhou, C. C. Non-small cell lung cancer in China. Cancer Commun (Lond). 2022, 42, 937–970

    Google Scholar 

  5. Bethesda, MD: National Cancer Institute. PDQ® Adult Treatment Editorial Board. PDQ Non-small cell lung cancer treatment–Health Professional version Feb. 17, 2023 updated [Online]. Aug. 30, 2023. https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq.

  6. Langer, C. J.; Mok, T.; Postmus, P. E. Targeted agents in the third/fourth-line treatment of patients with advanced (stage III/IV) non-small cell lung cancer (NSCLC). Cancer Treat. Rev. 2013, 39, 252–260.

    CAS  Google Scholar 

  7. Rotoli, D.; Santana-Viera, L.; Ibba, M. L.; Esposito, C. L.; Catuogno, S. Advances in oligonucleotide aptamers for NSCLC targeting. Int. J. Mol. Sci. 2020, 21, 6075.

    CAS  Google Scholar 

  8. Gridelli, C.; Casaluce, F. Frontline immunotherapy for NSCLC: Alone or not alone. Nat. Rev. Clin. Oncol. 2018, 15, 593–594.

    CAS  Google Scholar 

  9. Garon, E. B.; Hellmann, M. D.; Rizvi, N. A.; Carcereny, E.; Leighl, N. B.; Ahn, M. J.; Eder, J. P.; Balmanoukian, A. S.; Aggarwal, C.; Horn, L. et al. Five- year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: Results from the phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527.

    CAS  Google Scholar 

  10. Stower, H. Effective treatment of NSCLC. Nat. Med. 2020, 26, 1512–1512.

    Google Scholar 

  11. Turner, N. C.; Reis-Filho, J. S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012, 13, e178–e185.

    Google Scholar 

  12. Gettinger, S. N.; Horn, L.; Gandhi, L.; Spigel, D. R.; Antonia, S. J.; Rizvi, N. A.; Powderly, J. D.; Heist, R. S.; Carvajal, R. D.; Jackman, D. M. et al. Overall survival and long-term safety of Nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 2015, 33, 2004–2012.

    CAS  Google Scholar 

  13. Ardizzoni, A.; Boni, L.; Tiseo, M.; Fossella, F. V.; Schiller, J. H.; Paesmans, M.; Radosavljevic, D.; Paccagnella, A.; Zatloukal, P.; Mazzanti, P. et al. Cisplatin- versus carboplatin-based chemotherapy in first-line treatment of advanced non-small-cell lung cancer: An individual patient data meta-analysis. J. Natl. Cancer Inst. 2007, 99, 847–857.

    CAS  Google Scholar 

  14. Vasconcellos, V. F.; Marta, G. N.; Da Silva, E. M.; Gois, A. F.; De Castria, T. B.; Riera, R. Cisplatin versus carboplatin in combination with third-generation drugs for advanced non-small cell lung cancer. Cochrane Database Syst. Rev. 2020, 1, CD009256.

    Google Scholar 

  15. Chen, S. H.; Chang, J. Y. New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment. Int. J. Mol. Sci. 2019, 20, 4136.

    Google Scholar 

  16. Amable, L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016, 106, 27–36.

    CAS  Google Scholar 

  17. Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis. 2014, 5, e1257.

    CAS  Google Scholar 

  18. Kim, K. H.; Roberts, C. W. M. Targeting EZH2 in cancer. Nat. Med. 2016, 22, 128–134.

    CAS  Google Scholar 

  19. Varambally, S.; Dhanasekaran, S. M.; Zhou, M.; Barrette, T. R.; Kumar-Sinha, C.; Sanda, M. G.; Ghosh, D.; Pienta, K. J.; Sewalt, R. G. A. B.; Otte, A. P. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002, 419, 624–629.

    CAS  Google Scholar 

  20. Huqun; Ishikawa, R.; Zhang, J. L.; Miyazawa, H.; Goto, Y.; Shimizu, Y.; Hagiwara, K.; Koyama, N. Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer. Cancer 2012, 118, 1599–1606.

    CAS  Google Scholar 

  21. Tu, Z. G.; Chen, X. C.; Tian, T.; Chen, G.; Huang, M. J. Prognostic significance of epigenetic regulatory gene expression in patients with non-small-cell lung cancer. Aging 2021, 13, 7397–7415.

    CAS  Google Scholar 

  22. Wang, X. H.; Zhao, H. Q.; Lv, L.; Bao, L.; Wang, X.; Han, S. G. Prognostic significance of EZH2 expression in non-small cell lung cancer: A meta-analysis. Sci. Rep. 2016, 6, 19239.

    CAS  Google Scholar 

  23. Zang, X. Y.; Gu, J. M.; Zhang, J. Y.; Shi, H.; Hou, S. N.; Xu, X. Y.; Chen, Y. K.; Zhang, Y.; Mao, F.; Qian, H. et al. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis. 2020, 11, 215.

    CAS  Google Scholar 

  24. Xu, C. H.; Hao, K. K.; Hu, H. D.; Sheng, Z. H.; Yan, J.; Wang, Q. B.; Yu, L. K. Expression of the enhancer of zeste homolog 2 in biopsy specimen predicts chemoresistance and survival in advanced non-small cell lung cancer receiving first-line platinum-based chemotherapy. Lung Cancer 2014, 86, 268–273.

    Google Scholar 

  25. Liu, X. Y.; Lu, X. Y.; Zhen, F. X.; Jin, S. D.; Yu, T. F.; Zhu, Q.; Wang, W.; Xu, K.; Yao, J. Q.; Guo, R. H. LINC00665 induces acquired resistance to Gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC. Mol. Ther. Nucleic Acids 2019, 16, 155–161.

    CAS  Google Scholar 

  26. Jiang, M.; Fang, X. C.; Ma, L. L. S.; Liu, M. P.; Chen, M. T.; Liu, J. Y.; Yang, Y. L.; Wang, C. A nucleus-targeting peptide antagonist towards EZH2 displays therapeutic efficacy for lung cancer. Int. J. Pharm. 2022, 622, 121894.

    CAS  Google Scholar 

  27. Zhang, M.; Liu, E. G.; Cui, Y. N.; Huang, Y. Z. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol. Med. 2017, 14, 212.

    CAS  Google Scholar 

  28. Hu, C. M. J.; Zhang, L. F. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012, 83, 1104–1111.

    CAS  Google Scholar 

  29. Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1866–1879.

    CAS  Google Scholar 

  30. Holder, J. E.; Ferguson, C.; Oliveira, E.; Lodeiro, C.; Trim, C. M.; Byrne, L. J.; Bertolo, E.; Wilson, C. M. The use of nanoparticles for targeted drug delivery in non-small cell lung cancer. Front. Oncol. 2023, 13, 1154318.

    CAS  Google Scholar 

  31. Chen, J.; Wang, X.; Yuan, Y.; Chen, H. T.; Zhang, L. P.; Xiao, H. H.; Chen, J. Q.; Zhao, Y. X.; Chang, J.; Guo, W. S. et al. Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair-inhibiting (HYDRI) nanomedicine. Sci. Adv. 2021, 7, eabc5267.

    CAS  Google Scholar 

  32. Chao, M. P.; Weissman, I. L.; Majeti, R. The CD47-SIRPa pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 2012, 24, 225–232.

    CAS  Google Scholar 

  33. Zeng, Y. P.; Li, S. F.; Zhang, S. F.; Wang, L.; Yuan, H.; Hu, F. Q. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm. Sin. B. 2022, 12, 3233–3254.

    CAS  Google Scholar 

  34. Long, Y.; Wang, Z.; Fan, J. L.; Yuan, L. Q.; Tong, C. Y.; Zhao, Y. Z.; Liu, B. A hybrid membrane coating nanodrug system against gastric cancer via the VEGFR2/STAT3 signaling pathway. J. Mater. Chem. B 2021, 9, 3838–3855.

    CAS  Google Scholar 

  35. Liu, Z. W.; Wang, F. M.; Liu, X. P.; Sang, Y. J.; Zhang, L.; Ren, J. S.; Qu, X. G. Cell membrane-camouflaged liposomes for tumor cell-selective glycans engineering and imaging in vivo. Proc. Natl. Acad. Sci. USA 2021, 118, e2022769118.

    CAS  Google Scholar 

  36. Li, X. Y.; Yu, Y. Z.; Chen, Q.; Lin, J. B.; Zhu, X. Q.; Liu, X. T.; He, L. Z.; Chen, T. F.; He, W. L. Engineering cancer cell membrane-camouflaged metal complex for efficient targeting therapy of breast cancer. J. Nanobiotechnol. 2022, 20, 401.

    CAS  Google Scholar 

  37. Cao, H. Q.; Dan, Z. L.; He, X. Y.; Zhang, Z. W.; Yu, H. J.; Yin, Q.; Li, Y. P. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 2016, 10, 7738–7748.

    CAS  Google Scholar 

  38. Uemura, Y.; Naoi, T.; Kanai, Y.; Kobayashi, K. The efficiency of lipid nanoparticles with an original cationic lipid as a siRNA delivery system for macrophages and dendritic cells. Pharm. Dev. Technol. 2019, 24, 263–268.

    CAS  Google Scholar 

  39. Zhou, W.; Wang, J.; Man, W. Y.; Zhang, Q. W.; Xu, W. G. siRNA silencing EZH2 reverses cisplatin-resistance of human non-small cell lung and gastric cancer cells. Asian Pac. J. Cancer Prev. 2015, 16, 2425–2430.

    Google Scholar 

  40. Yang, D. L.; Feng, W. Y.; Zhuang, Y.; Liu, J. X.; Feng, Z. Q.; Xu, T. W.; Wang, W.; Zhu, Y. F.; Wang, Z. X. Long non-coding RNA linc00665 inhibits CDKN1C expression by binding to EZH2 and affects cisplatin sensitivity of NSCLC cells. Mol. Ther. Nucleic Acids 2021, 23, 1053–1065.

    CAS  Google Scholar 

  41. Farhood, H.; Serbina, N.; Huang, L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim. Biophys. Acta Biomembr. 1995, 1235, 289–295.

    Google Scholar 

  42. Jääskeläinen, I.; Sternberg, B.; Mönkkönen, J.; Urtti, A. Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. Int. J. Pharm. 1998, 167, 191–203.

    Google Scholar 

  43. Liskayová, G.; Hubčík, L.; Búcsi, A.; Fazekaš, T.; Martínez, J. C.; Devínsky, F.; Pisárčik, M.; Hanulová, M.; Ritz, S.; Uhríková, D. pH-sensitive N,N-dimethylalkane-1-amine N-oxides in DNA delivery: From structure to transfection efficiency. Langmuir 2019, 35, 13382–13395.

    Google Scholar 

  44. Boulikas, T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol. Rep. 2004, 12, 3–12.

    CAS  Google Scholar 

  45. Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Kalantari, M.; Mohammadinejad, R.; Javaheri, T.; Sethi, G. Association of the epithelial-mesenchymal transition (EMT) with cisplatin resistance. Int. J. Mol. Sci. 2020, 21, 4002.

    CAS  Google Scholar 

  46. Cao, Z. Q.; Wang, Z.; Leng, P. Aberrant N-cadherin expression in cancer. Biomed. Pharm. 2019, 118, 109320.

    CAS  Google Scholar 

  47. Hui, L. P.; Zhang, S. Y.; Dong, X. J.; Tian, D. L.; Cui, Z. S.; Qiu, X. S. Prognostic significance of twist and N-cadherin expression in NSCLC. PLoS One 2013, 8, e62171.

    CAS  Google Scholar 

  48. Satelli, A.; Li, S. L. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol. Life Sci. 2011, 68, 3033–3046.

    CAS  Google Scholar 

  49. Kourtidis, A.; Lu, R. F.; Pence, L. J.; Anastasiadis, P. Z. A central role for cadherin signaling in cancer. Exp. Cell Res. 2017, 358, 78–85.

    CAS  Google Scholar 

  50. Boldin, M. P.; Goncharov, T. M.; Goltseve, Y. V.; Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996, 85, 803–815.

    CAS  Google Scholar 

  51. Muzio, M.; Chinnaiyan, A. M.; Kischkel, F. C.; O’Rourke, K.; Shevchenko, A.; Ni, J.; Scaffidi, C.; Bretz, J. D.; Zhang, M.; Gentz, R. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996, 85, 817–827.

    CAS  Google Scholar 

  52. Barski, A.; Cuddapah, S.; Cui, K. R.; Roh, T. Y.; Schones, D. E.; Wang, Z. B.; Wei, G.; Chepelev, I.; Zhao, K. J. High-resolution profiling of histone methylations in the human genome. Cell 2007, 129, 823–837.

    CAS  Google Scholar 

  53. Dawson, M. A.; Kouzarides, T. Cancer epigenetics: From mechanism to therapy. Cell 2012, 150, 12–27.

    CAS  Google Scholar 

  54. Zaib, S.; Rana, N.; Khan, I. Histone modifications and their role in epigenetics of cancer. Curr. Med. Chem. 2022, 29, 2399–2411.

    CAS  Google Scholar 

  55. Greer, E. L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357.

    CAS  Google Scholar 

  56. Margueron, R.; Reinberg, D. The polycomb complex PRC2 and its mark in life. Nature 2012, 469, 343–349.

    Google Scholar 

  57. Moufarrij, S.; Dandapani, M.; Arthofer, E.; Gomez, S.; Srivastava, A.; Lopez-Acevedo, M.; Villagra, A.; Chiappinelli, K. B. Epigenetic therapy for ovarian cancer: Promise and progress. Clin. Epinenet. 2019, 11, 7.

    Google Scholar 

  58. Gao, W.; Zhang, J.; Zhang, M. J.; Hu, L. Y.; Wong, T. S.; Chan, J. Y. W. The functional role of NGFR in regulating chemosensitivity in nasopharyngeal carcinoma. Ann. Oncol. 2018, 29, vii72.

    Google Scholar 

  59. Huang, J.; Yu, Q. H.; Zhou, Y. J.; Chu, Y.; Jiang, F.; Zhu, X. B.; Zhang, J. J.; Wang, Q. A positive feedback loop formed by NGFR and FOXP3 contributes to the resistance of non-small cell lung cancer to icotinib. Transl. Cancer Res. 2020, 9, 1044–1052.

    CAS  Google Scholar 

  60. Zhang, J.; Zeng, Y. Y.; Xing, Y. P.; Li, X. R.; Zhou, L. Q.; Hu, L.; Chin, Y. E.; Wu, M. Myristoylation- mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Lett. 2021, 516, 84–98.

    CAS  Google Scholar 

  61. Lu, Z. H.; Fang, Z.; Guo, Y.; Liu, X. F.; Chen, S. J. Cisplatin resistance of NSCLC cells involves upregulation of visfatin through activation of its transcription and stabilization of mRNA. Chem. Biol. Interact. 2022, 351, 109705.

    CAS  Google Scholar 

  62. Mukherjee, T. K.; Paul, K.; Mukhopadhyay, S. Cell signaling molecules as drug targets in lung cancer: An overview. Curr. Opin. Pulm. Med. 2011, 17, 286–291.

    CAS  Google Scholar 

  63. Hu, F. F.; Chen, H.; Duan, Y.; Lan, B.; Liu, C. J.; Hu, H.; Dong, X.; Zhang, Q.; Cheng, Y. M.; Liu, M. et al. CBX2 and EZH2 cooperatively promote the growth and metastasis of lung adenocarcinoma. Mol. Ther. Nucleic Acids 2022, 27, 670–684.

    CAS  Google Scholar 

  64. Kim, T. W.; Hong, D. W.; Kang, C. M.; Hong, S. H. A novelPPARɣ ligand, PPZ023, overcomes radioresistance via ER stress and cell death in human non-small-cell lung cancer cells. Exp. Mol. Med. 2020, 52, 1730–1743.

    CAS  Google Scholar 

  65. Hu, S.; Yu, L. L.; Li, Z. M.; Shen, Y.; Wang, J.; Cai, J.; Xiao, L.; Wang, Z. H. Overexpression of EZH2 contributes to acquired cisplatin resistance in ovarian cancer cells in vitro and in vivo. Cancer Biol. Ther. 2010, 10, 788–795.

    CAS  Google Scholar 

  66. Rizzo, S.; Hersey, J. M.; Mellor, P.; Dai, W.; Santos-Silva, A.; Liber, D.; Luk, L.; Titley, I.; Carden, C. P.; Box, G. et al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol. Cancer Ther. 2011, 10, 325–335.

    CAS  Google Scholar 

  67. Dou, D. W.; Ge, X.; Wang, X. X.; Xu, X. D.; Zhang, Z.; Seng, J.; Cao, Z.; Gu, Y. T.; Han, M. L. EZH2 contributes to cisplatin resistance in breast cancer by epigenetically suppressing miR-381 expression. Onco Tarnets Ther. 2019, 12, 9627–9637

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 32101130, 21721002, and 31971295). Financial support from Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaocui Fang, Yanlian Yang or Chen Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jiang, M., Chen, M. et al. Formulated nano-liposomes for reversal of cisplatin resistance in NSCLC with nucleus-targeting peptide. Nano Res. 16, 12864–12879 (2023). https://doi.org/10.1007/s12274-023-6273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6273-y

Keywords

Navigation