Skip to main content
Log in

MOF-derived Se doped MnS/Ti3C2Tx as cathode and Zn-Ti3C2Tx membrane as anode for rocking-chair zinc-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mn-based zinc ion battery has the advantages of low cost and high performance, which makes it the promising energy storage system. However, the poor conductivity and the agglomeration in the synthesis process of manganese-based materials restrict the performance of batteries. Herein, the Se-doped MnS/Ti3C2Tx (Se-MnS/Ti3C2Tx) composite material derived from Mn-based metal-organic framework is reported. Electrochemical tests show that Se-doped could generate S defects and enhance the electrochemical activity of MnS. At the same time, the introduction of Ti3C2Tx substrate is conducive to exposing more sulfur defects and improving the utilization rate of defects. In the mechanism study, it is found that Se-MnS/Ti3C2Tx is transformed into S/Se co-doped Mn3O4 at the first charge, which innovatively elucidated the behavior of S/Se during activation. In the electrochemical performance test, the specific capacity can reach 74.7 mAh·g−1 at 5.0 A·g−1. In addition, the Zn-Ti3C2Tx membrane electrode is prepared by vacuum filtration as the zinc-poor anode, which is assembled into the rocking chair full battery to avoid dendrite growth and exhibit excellent rate performance. The addition of Zn2+ weakens the electrostatic repulsion between the interlayers of MXene, and the formation of the folded morphology aids the penetration of the electrolyte. At 1.0 A·g−1, the capacity can reach 50.6 mAh·g−1. This work is helpful to promote the research and development of the reaction mechanism of manganese based rocking chair batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. F.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, C. Z.; Yang, H.; Wang, B.; Ding, P. B.; Wan, Y.; Bao, W. J.; Li, Y. N.; Ma, S. Y.; Liu, Y.; Lu, Y. K. et al. Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO2 cathodes for Zn//MnO2 batteries. Nano Res. 2023, 16, 9488–9495.

    Article  ADS  CAS  Google Scholar 

  3. Yuan, N.; Deng, Y.-R.; Wang, S.-H.; Gao, L.; Yang, J.-L.; Zou, N.-C.; Liu, B.-X.; Zhang, J.-Q.; Liu, R.-P.; Zhang, L. Towards superior lithium-sulfur batteries with metal-organic frameworks and their derivatives. Tungsten 2022, 4, 269–283.

    Article  Google Scholar 

  4. Lv, W.; Meng, J. W.; Li, X. D.; Xu, C.; Yang, W. J.; Duan, S. Z.; Li, Y. M.; Ju, X.; Yuan, R. S.; Tian, Y. L. et al. Boosting zinc storage in potassium-birnessite via organic-inorganic electrolyte strategy with slight N-methyl-2-pyrrolidone additive. Energy Storage Mater. 2023, 54, 784–793.

    Article  Google Scholar 

  5. Geng, K.-Q.; Yang, M.-Q.; Meng, J.-X.; Zhou, L.-F.; Wang, Y.-Q.; Dmytro, S.; Zhang, Q.; Zhong, S.-W.; Ma, Q.-X. Engineering layered/spinel heterostructure via molybdenum doping towards highly stable Li-rich cathodes. Tungsten 2022, 4, 323–335.

    Article  Google Scholar 

  6. Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and Free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

    Article  CAS  PubMed  Google Scholar 

  7. Lv, W.; Meng, J. W.; Li, Y. M.; Yang, W. J.; Tian, Y. L.; Lyu, X.; Duan, C. W.; Ma, X. L.; Wu, Y. Inexpensive and eco-friendly nanostructured birnessite-type 5-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation. Nano Energy 2022, 98, 107274.

    Article  CAS  Google Scholar 

  8. Zhao, X. Y.; Liang, X. Q.; Li, Y.; Chen, Q. G.; Chen, M. H. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 2021, 42, 533–569.

    Article  Google Scholar 

  9. Yong, B.; Ma, D. T.; Wang, Y. Y.; Mi, H. W.; He, C. X.; Zhang, P. X. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: From transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 2020, 10, 2002354.

    Article  CAS  Google Scholar 

  10. Sun, K. S.; Pang, J. X.; Zheng, Y.; Xing, F. Y.; Jiang, R.; Min, J.; Ye, J. H.; Wang, L. P.; Luo, Y.; Gu, T. T. et al. Oxygen vacancies enriched MOF-derived MnO/C hybrids for high-performance aqueous zinc ion battery. J. Alloys Compd. 2022, 923, 166470.

    Article  CAS  Google Scholar 

  11. Chen, X. J.; Li, W.; Xu, Y. B.; Zeng, Z. P.; Tian, H. C.; Velayutham, M.; Shi, W. Y.; Li, W. Y.; Wang, C. M.; Reed, D. et al. Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy 2020, 75, 104869.

    Article  CAS  Google Scholar 

  12. Liu, C. L.; Bai, Y.; Li, W. T.; Yang, F. Y.; Zhang, G. X.; Pang, H. In situ growth of three-dimensional MXene/metal-organic framework composites for high-performance supercapacitors. Angew. Chem., Int. Ed. 2022, 61, e202116282.

    Article  ADS  CAS  Google Scholar 

  13. Zhao, Y. J.; Zhang, P. J.; Liang, J. R.; Xia, X. Y.; Ren, L. T.; Song, L.; Liu, W.; Sun, X. M. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022, 47, 424–433.

    Article  Google Scholar 

  14. Tang, Y. C.; Li, X. J.; Lv, H. M.; Xie, D.; Wang, W. L.; Zhi, C. Y.; Li, H. F. Stabilized Co3+/Co4+ redox pair in situ produced CoSe2x-derived cobalt oxides for alkaline Zn batteries with 10000-cycle lifespan and 1.9-V voltage plateau. Adv. Energy Mater. 2020, 10, 2000892.

    Article  CAS  Google Scholar 

  15. Wang, X.; Wang, Y. M.; Jiang, Y. P.; Li, X. L.; Liu, Y.; Xiao, H. H.; Ma, Y.; Huang, Y. Y.; Yuan, G. H. Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries. Adv. Funct. Mater. 2021, 31, 2103210.

    Article  CAS  Google Scholar 

  16. Fan, Z. D.; Jin, J.; Li, C.; Cai, J. S.; Wei, C. H.; Shao, Y. L.; Zou, G. F.; Sun, J. Y. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 2021, 15, 3098–3107.

    Article  CAS  PubMed  Google Scholar 

  17. Shi, M. J.; Wang, B.; Shen, Y.; Jiang, J. T.; Zhu, W. H.; Su, Y. J.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020, 399, 125627.

    Article  CAS  Google Scholar 

  18. Taylor, K. M. L.; Rieter, W. J.; Lin, W. B. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng, Q.; Tian, S. H.; Liu, G.; Yang, H. C.; Sun, X.; Wang, D.; Huang, J. J.; Yan, D.; Peng, S. L. Sulfur-bridged bonds boost the conversion reaction of the flexible self-supporting MnS@MXene@CNF anode for high-rate and long-life lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 6958–6966.

    Article  CAS  PubMed  Google Scholar 

  20. Ma, L. L.; Yu, L. J.; Liu, J. C.; Su, Y. Q.; Li, S.; Zang, X. H.; Meng, T.; Zhang, S. H.; Song, J. J.; Wang, J. Y. et al. Construction of Ti4O7/TiN/carbon microdisk sulfur host with strong polar N-Ti-O bond for ultralong life lithium-sulfur battery. Energy Storage Mater. 2022, 44, 180–189.

    Article  Google Scholar 

  21. Yang, J.; Wang, C. D.; Ju, H. X.; Sun, Y.; Xing, S. Q.; Zhu, J. F.; Yang, Q. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: Synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 2017, 27, 1703864.

    Article  Google Scholar 

  22. Zhang, D. D.; Cao, J.; Zhang, X. Y.; Insin, N.; Wang, S. M.; Han, J. T.; Zhao, Y. S.; Qin, J. Q.; Huang, Y. H. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery. Adv. Funct. Mater. 2021, 31, 2009412.

    Article  CAS  Google Scholar 

  23. Deng, X. L.; Zou, K. Y.; Momen, R.; Cai, P.; Chen, J.; Hou, H. S.; Zou, G. Q.; Ji, X. B. High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 2021, 66, 1858–1868.

    Article  CAS  Google Scholar 

  24. Yang, H.; Zhou, W. H.; Chen, D.; Liu, J. H.; Yuan, Z. Y.; Lu, M. J.; Shen, L. F.; Shulga, V.; Han, W.; Chao, D. L. The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: A Mn-based competitive capacity evolution protocol. Energy Environ. Sci. 2022, 15, 1106–1118.

    Article  CAS  Google Scholar 

  25. Zhu, C. Y.; Fang, G. Z.; Liang, S. Q.; Chen, Z. X.; Wang, Z. Q.; Ma, J. Y.; Wang, H.; Tang, B. Y.; Zheng, X. S.; Zhou, J. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020, 24, 394–401.

    Article  Google Scholar 

  26. Deng, S. Z.; Tie, Z.; Yue, F.; Cao, H. M.; Yao, M. J.; Niu, Z. Q. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202115877.

    Article  ADS  CAS  Google Scholar 

  27. Mao, M.; Wu, X. X.; Hu, Y.; Yuan, Q. H.; He, Y. B.; Kang, F. Y. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J. Energy Chem. 2021, 52, 277–283.

    Article  CAS  Google Scholar 

  28. Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Park, S.; Kim, S.; Lee, S.; Ahmed, M. S.; Mathew, V.; Sun, Y. K.; Hwang, J. Y. et al. In situ oriented Mn deficient ZnMn2O4@C nanoarchitecture for durable rechargeable aqueous zinc-ion batteries. Adv. Sci. 2021, 8, 2002636.

    Article  CAS  Google Scholar 

  29. Guo, X. L.; Sun, H.; Li, C. G.; Zhang, S. Q.; Li, Z. H.; Hou, X. Y.; Chen, X. B.; Liu, J. Y.; Shi, Z.; Feng, S. H. Defect-engineered Mn3O4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance. J. Energy Chem. 2022, 68, 538–547.

    Article  CAS  Google Scholar 

  30. Sun, K. S.; Shen, Y. F.; Min, J.; Pang, J. X.; Zheng, Y.; Gu, T. T.; Wang, G.; Chen, L. MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 2023, 454, 140394.

    Article  CAS  Google Scholar 

  31. Liu, Y. Z.; Qin, Z. M.; Yang, X. P.; Sun, X. Q. A long-life manganese oxide cathode material for aqueous zinc batteries with a negatively charged porous host to promote the back-deposition of dissolved Mn2+. Adv. Funct. Mater. 2022, 32, 2106994.

    Article  CAS  Google Scholar 

  32. Tang, F.; Wu, X. S.; Shen, Y. Q.; Xiang, Y. H.; Wu, X. M.; Xiong, L. Z.; Wu, X. W. The intercalation cathode materials of heterostructure MnS/MnO with dual ions defect embedded in N-doped carbon fibers for aqueous zinc ion batteries. Energy Storage Mater. 2022, 52, 180–188.

    Article  Google Scholar 

  33. Xing, S. Q.; Yang, J.; Muska, M.; Li, H. R.; Yang, Q. Rock-salt MnS0.5Se0.5 nanocubes assembled on N-doped graphene forming van der waals heterostructured hybrids as high-performance anode for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 22608–22620.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, X. D.; Li, X. Y.; Essandoh, M. L. K.; Tan, J.; Cao, Z. Y.; Zhang, X.; Dong, P.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 2022, 50, 243–251.

    Article  Google Scholar 

  35. Li, F.; Liu, Y. L.; Wang, G. G.; Zhang, S. Y.; Zhao, D. Q.; Fang, K.; Zhang, H. Y.; Yang, H. Y. 3D porous H-Ti3C2Tx films as freestanding electrodes for zinc ion hybrid capacitors. Chem. Eng. J. 2022, 435, 135052.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 51962032), the program for Strong Youth Technology Leading Talents in Bingtuan Technological Innovation Talents (No. 2023CB00811), Youth Innovation Promotion Association CAS (No. 2021433), the Youth Innovative Top Talents Fund, Shihezi University (No. CXBJ202203), and Youth Science and Technology Innovation Leading Talent Fund, Bashi Shihezi (No. 2023RC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Xiao, Z., Shen, Y. et al. MOF-derived Se doped MnS/Ti3C2Tx as cathode and Zn-Ti3C2Tx membrane as anode for rocking-chair zinc-ion battery. Nano Res. 17, 2781–2789 (2024). https://doi.org/10.1007/s12274-023-6207-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6207-8

Keywords

Navigation