Skip to main content
Log in

Developing in situ electron paramagnetic resonance characterization for understanding electron transfer of rechargeable batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical energy storage devices are pivotal in achieving “carbon neutrality” by enabling the storage of energy generated from renewable sources. To facilitate the development of these devices, it is important to gain insight into the underlying the single-/multi-electron transfer process. This can be achieved through in-time detection under operational conditions, but there are limited tools available for monitoring electron transfer under operando conditions. Electron paramagnetic resonance (EPR) is a powerful technique that can meet these expectations, as it is highly sensitive to unpaired electrons and can detect changes of paramagnetic centres. Despite the long history of in situ electrochemical EPR research, its potential has been surprisingly underutilized due to the need for strict operando cell design under special testing conditions. This review comprehensively summarizes recent efforts to understand energy storage mechanisms using in situ/operando EPR, with the aim of drawing researchers’ attention to this powerful technique. After introducing the fundamental principles of EPR, we describe the critical advances made in detecting batteries using operando EPR, along with the remaining challenges and opportunities for future development of this technology in batteries. We emphasize the need for strict operando cell design and the importance of designing experiments that closely mimic real-world conditions. We believe that this review will provide innovative solutions to solve tough problems that researchers may encounter during their battery research, and ultimately contribute to the development of more efficient and sustainable energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

    Google Scholar 

  2. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    CAS  Google Scholar 

  3. Nykvist, B.; Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Climate Change 2015, 5, 329–332.

    Google Scholar 

  4. Viswanathan, V. V.; Kintner-Meyer, M. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services. IEEE Trans. Veh. Technol. 2011, 60, 2963–2970.

    Google Scholar 

  5. Gu, M.; Parent, L. R.; Mehdi, B. L.; Unocic, R. R.; McDowell, M. T.; Sacci, R. L.; Xu, W.; Connell, J. G.; Xu, P. H.; Abellan, P. et al. Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 2013, 13, 6106–6112.

    CAS  Google Scholar 

  6. Hess, M.; Sasaki, T.; Villevieille, C.; Novák, P. Combined operando X-ray diffraction-electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries. Nat. Commun. 2015, 6, 8169.

    Google Scholar 

  7. Liu, D. X.; Wang, J. H.; Pan, K.; Qiu, J.; Canova, M.; Cao, L. R.; Co, A. C. In situ quantification and visualization of lithium transport with neutrons. Angew. Chem., Int. Ed. 2014, 53, 9498–9502.

    CAS  Google Scholar 

  8. Wang, J. J.; Chen-Wiegart, Y. C. K.; Wang, J. In situ theee-dimensional synchrotron X-ray nanotomography of the (de)lithiation processes in tin anodes. Angew. Chem., Int. Ed. 2014, 53, 4460–4464.

    CAS  Google Scholar 

  9. Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 2012, 11, 311–315.

    CAS  Google Scholar 

  10. Li, Q.; Li, H. S.; Xia, Q. T.; Hu, Z. Q.; Zhu, Y.; Yan, S. S.; Ge, C.; Zhang, Q. H.; Wang, X. X.; Shang, X. T. et al. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 2021, 20, 76–83.

    Google Scholar 

  11. Kasap, S.; Kaya, I. I.; Repp, S.; Erdem, E. Superbat: Battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv. 2019, 1, 2586–2597.

    CAS  Google Scholar 

  12. Sun, Y.; Zan, L.; Zhang, Y. X. Enhanced electrochemical performances of Li2MnO3 cathode materials via adjusting oxygen vacancies content for lithium-ion batteries. Appl. Surf. Sci. 2019, 483, 270–277.

    CAS  Google Scholar 

  13. Zhao, D. Y.; Zhu, Q. C.; Li, X. H.; Dun, M. H.; Wang, Y.; Huang, X. T. Oxygen vacancies of commercial V2O5 induced by mechanical force to enhance the diffusion of zinc ions in aqueous zinc battery. Batteries Supercaps 2022, 5, e202100341.

    CAS  Google Scholar 

  14. Shkrob, I. A.; Kropf, A. J.; Marin, T. W.; Li, Y.; Poluektov, O. G.; Niklas, J.; Abraham, D. P. Manganese in graphite anode and capacity fade in Li ion batteries. J. Phys. Chem. C 2014, 118, 24335–24348.

    CAS  Google Scholar 

  15. Lawton, J. S.; Aaron, D. S.; Tang, Z. J.; Zawodzinski, T. A. Qualitative behavior of vanadium ions in Nafion membranes using electron spin resonance. J. Membr. Sci. 2013, 428, 38–45.

    CAS  Google Scholar 

  16. Wujcik, K. H.; Wang, D. R.; Raghunathan, A.; Drake, M.; Pascal, T. A.; Prendergast, D.; Balsara, N. P. Lithium polysulfide radical anions in ether-based solvents. J. Phys. Chem. C 2016, 120, 18403–18410.

    CAS  Google Scholar 

  17. Stich, T. A.; McAlpin, J. G.; Wall, R. M.; Rigsby, M. L.; Britt, R. D. Electron paramagnetic resonance characterization of dioxygen-bridged cobalt dimers with relevance to water oxidation. Inorg. Chem. 2016, 55, 12728–12736.

    CAS  Google Scholar 

  18. Huang, J. H.; Hu, S. Z.; Yuan, X. Z.; Xiang, Z. P.; Huang, M. B.; Wan, K.; Piao, J. H.; Fu, Z. Y.; Liang, Z. X. Radical stabilization of a tripyridinium-triazine molecule enables reversible storage of multiple electrons. Angew. Chem., Int. Ed. 2021, 60, 20921–20925.

    CAS  Google Scholar 

  19. Huang, J. H.; Shkrob, I. A.; Wang, P. Q.; Cheng, L.; Pan, B. F.; He, M. N.; Liao, C.; Zhang, Z. C.; Curtiss, L. A.; Zhang, L. 1, 4-Bis(trimethylsilyl)-2, 5-dimethoxybenzene:A novel redox shuttle additive for overcharge protection in lithium-ion batteries that doubles as a mechanistic chemical probe. J. Mater. Chem. A 2015, 3, 7332–7337.

    CAS  Google Scholar 

  20. Wang, W. X.; Cao, Z.; Elia, G. A.; Wu, Y. Q.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A. H.; Cavallo, L.; Li, L. J.; Ming, J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li−S batteries and beyond in Al−S Batteries. ACS Energy Lett. 2018, 3, 2899–2907.

    CAS  Google Scholar 

  21. Li, G. P.; Zhang, B. J.; Wang, J. W.; Zhao, H. Y.; Ma, W. Q.; Xu, L. T.; Zhang, W. D.; Zhou, K.; Du, Y. P.; He, G. Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 8468–8473.

    CAS  Google Scholar 

  22. Liao, Y. X.; Li, C.; Lou, X. B.; Wang, P.; Yang, Q.; Shen, M.; Hu, B. W. Highly reversible lithium storage in cobalt 2, 5-dioxido-1, 4-benzenedicarboxylate metal–organic frameworks boosted by pseudocapacitance. J. Colloid Interface Sci. 2017, 506, 365–372.

    CAS  Google Scholar 

  23. Jiang, Q.; Xiong, P. X.; Liu, J. J.; Xie, Z.; Wang, Q. C.; Yang, X. Q.; Hu, E. Y.; Cao, Y.; Sun, J.; Xu, Y. H. et al. A Redox-active 2D metal–organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem., Int. Ed. 2020, 59, 5273–5277.

    CAS  Google Scholar 

  24. Zhou, T.; Jin, W. Z.; Xue, W. W.; Dai, B.; Feng, C.; Huang, X. Y.; Théato, P.; Li, Y. J. Radical polymer-grafted carbon nanotubes as high-performance cathode materials for lithium organic batteries with promoted n-/p-type redox reactions. J. Power Sources 2021, 483, 229136.

    CAS  Google Scholar 

  25. Lou, X. B.; Ning, Y. Q.; Li, C.; Hu, X. S.; Shen, M.; Hu, B. W. Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms. Sci. China Mater. 2018, 61, 1040–1048.

    CAS  Google Scholar 

  26. Linnell, S. F.; Kim, E. J.; Choi, Y. S.; Hirsbrunner, M.; Imada, S.; Pramanik, A.; Cuesta, A. F.; Miller, D. N.; Fusco, E.; Bode, B. E. et al. Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[Al1/7Ti1/7Mn5/7]O2 in sodium-ion batteries. J. Mater. Chem. A 2022, 10, 9941–9953.

    CAS  Google Scholar 

  27. Song, B. H.; Tang, M. X.; Hu, E. Y.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y. M.; Phillip, N. D.; Liu, X. M.; Shadike, Z.; Li, C. et al. Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7. Chem. Mater. 2019, 31, 3756–3765.

    CAS  Google Scholar 

  28. Gourier, D.; Tranchant, A.; Baffier, N.; Messina, R. EPR study of electrochemical lithium intercalation in V2O5 cathodes. Electrochim. Acta 1992, 37, 2755–2764.

    CAS  Google Scholar 

  29. Li, C.; Shen, M.; Lou, X. B.; Hu, B. W. Unraveling the redox couples of VIII/VIV mixed-valent Na3V2(PO4)2O1.6F1.4 cathode by parallel-mode EPR and in situ/ex situ NMR. J. Phys. Chem. C 2018, 122, 27224–27232.

    CAS  Google Scholar 

  30. Wang, J.; Lei, G.; He, T.; Cao, H. J.; Chen, P. Defect-rich potassium amide: A new solid-state potassium ion electrolyte. J. Energy Chem. 2022, 69, 555–560.

    CAS  Google Scholar 

  31. Li, C.; Hu, X. S.; Tong, W.; Yan, W. S.; Lou, X. B.; Shen, M.; Hu, B. W. Ultrathin manganese-based metal–organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl. Mater. Interfaces 2017, 9, 29829–29838.

    CAS  Google Scholar 

  32. Menachem, C.; Wang, Y.; Flowers, J.; Peled, E.; Greenbaum, S. G. Characterization of lithiated natural graphite before and after mild oxidation. J. Power Sources 1998, 76, 180–185.

    CAS  Google Scholar 

  33. Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

    Google Scholar 

  34. Wang, Z. H.; Feng, X.; Bai, Y.; Yang, H. Y.; Dong, R. Q.; Wang, X. R.; Xu, H. J.; Wang, Q. Y.; Li, H.; Gao, H. C. et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2003854.

    CAS  Google Scholar 

  35. Li, Q.; Zhang, J.; Zhong, L. X.; Geng, F. S.; Tao, Y.; Geng, C. N.; Li, S. Z.; Hu, B. W.; Yang, Q. H. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes. Adv. Energy Mater. 2022, 12, 2201734.

    CAS  Google Scholar 

  36. Zhecheva, E.; Stoyanova, R.; Jiménez-Mateos, J. M.; Alcántara, R.; Lavela, P.; Tirado, J. L. EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon 2002, 40, 2301–2306.

    CAS  Google Scholar 

  37. Hu, B.; Geng, F. S.; Shen, M.; Zhao, C.; Qiu, Q.; Lin, Y.; Chen, C. X.; Wen, W.; Zheng, S.; Hu, X. S. et al. A multifunctional manipulation to stabilize oxygen redox and phase transition in 4.6 V high-voltage LiCoO2 with SXAS and EPR studies. J. Power Sources 2021, 516, 230661.

    CAS  Google Scholar 

  38. Zhao, C.; Li, C.; Liu, H.; Qiu, Q.; Geng, F. S.; Shen, M.; Tong, W.; Li, J. X.; Hu, B. W. Coexistence of (O2)n and trapped molecular O2 as the oxidized species in P2-type sodium 3d layered oxide and stable interface enabled by highly fluorinated electrolyte. J. Am. Chem. Soc. 2021, 143, 18652–18664.

    CAS  Google Scholar 

  39. Liu, H.; Li, C.; Zhao, C.; Tong, W.; Hu, B. W. Coincident formation of trapped molecular O2 in oxygen-redox-active archetypical Li 3d oxide cathodes unveiled by EPR spectroscopy. Energy Storage Mater. 2022, 50, 55–62.

    CAS  Google Scholar 

  40. Zhu, Z.; Kushima, A.; Yin, Z. Y.; Qi, L.; Amine, K.; Lu, J.; Li, J. Anion-redox nanolithia cathodes for Li-ion batteries. Nat. Energy 2016, 1, 16111.

    CAS  Google Scholar 

  41. Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.

    CAS  Google Scholar 

  42. Risse, T.; Hollmann, D.; Brückner, A. Chapter 1: In situ electron paramagnetic resonance (EPR)—A unique tool for analysing structure and reaction behaviour of paramagnetic sites in model and real catalysts. In Catalysis: Volume 27. Spivey, J.; Dooley, K.; Han, Y. F., Eds.; The Royal Society of Chemistry, 2015; pp 1–32.

  43. den Hartog, S.; Neukermans, S.; Samanipour, M.; Ching, H. Y. V.; Breugelmans, T.; Hubin, A.; Ustarroz, J. Electrocatalysis under a magnetic lens: A combined electrochemistry and electron paramagnetic resonance review. Electrochim. Acta 2022, 407, 139704.

    CAS  Google Scholar 

  44. Li, X.; Deck, M.; Hu, Y. Y. Solid-state NMR and EPR characterization of transition-metal oxides for electrochemical energy storage. In Transition Metal Oxides for Electrochemical Energy Storage; Nanda, J.; Augustyn, V., Eds.; Wiley-VCH: Weinheim, 2022; pp 299–318.

    Google Scholar 

  45. Bonke, S. A.; Risse, T.; Schnegg, A.; Brückner, A. In situ electron paramagnetic resonance spectroscopy for catalysis. Nat. Rev. Methods Primers 2021, 1, 33.

    CAS  Google Scholar 

  46. Nguyen, H.; Clément, R. J. Rechargeable batteries from the perspective of the electron spin. ACS Energy Lett. 2020, 5, 3848–3859.

    CAS  Google Scholar 

  47. Brustolon, M.; Giamello, E. Electron Paramagnetic Resonance: A Practitioners Toolkit; Wiley: Hoboken, 2009.

    Google Scholar 

  48. Chechik, V.; Murphy, D. M. Electron Paramagnetic Resonance; The Royal Society of Chemistry: 2016.

  49. Eaton, G. R.; Eaton, S. S.; Barr, D. P.; Weber, R. T. Quantitative EPR; Springer: Vienna, 2010.

    Google Scholar 

  50. Eaton, S. S.; Eaton, G. R. Electron paramagnetic resonance. In Analytical Instrumentation Handbook, 3rd ed.; Cazes, J., Ed.; CRC Press: Boca Raton, 2004; pp 375–424.

    Google Scholar 

  51. Stoyanova, R.; Gorova, M.; Zhecheva, E. EPR monitoring of Mn4+ distribution in Li4Mn5O12 spinels. J. Phys. Chem. Solids 2000, 61, 615–620.

    CAS  Google Scholar 

  52. Zhecheva, E.; Stoyanova, R. Effect of allied and alien ions on the EPR spectrum of Mn4+-containing lithium-manganese spinel oxides. Solid State Commun. 2005, 135, 405–410.

    CAS  Google Scholar 

  53. van Vleck, J. H. The dipolar broadening of magnetic resonance lines in crystals. Phys. Rev. 1948, 74, 1168–1183.

    Google Scholar 

  54. Stoyanova, R.; Gorova, M.; Zhecheva, E. EPR of Mn4+ in spinels Li1+xMn2−xO4 with 0 ≤ x ≤ 0.1. J. Phys. Chem. Solids 2000, 61, 609–614.

    CAS  Google Scholar 

  55. Massarotti, V.; Capsoni, D.; Bini, M.; Azzoni, C. B.; Paleari, A. Stoichiometry of Li2MnO3 and LiMn2O4 coexisting phases: XRD and EPR characterization. J. Solid State Chem. 1997, 128, 80–86.

    CAS  Google Scholar 

  56. Zhecheva, E.; Stoyanova, R.; Gorova, M.; Lavela, P.; Tirado, J. L. Co/Mn distribution and electrochemical intercalation of Li into Li[Mn2−yCoy]O4 spinels, 0 < y ≤ 1. Solid State Ionics 2001, 140, 19–33.

    CAS  Google Scholar 

  57. Zhecheva, E.; Stoyanova, R.; Alcántara, R.; Tirado, J. L. Electron paramagnetic resonance and solid-state NMR study of cation distribution in LiGayCo1−yO2 and effects on the electrochemical oxidation. J. Phys. Chem. B 2003, 107, 4290–4295.

    CAS  Google Scholar 

  58. Shinova, E.; Stoyanova, R.; Zhecheva, E.; Ortiz, G. F.; Lavela, P.; Tirado, J. L. Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries. Solid State Ionics 2008, 179, 2198–2208.

    CAS  Google Scholar 

  59. Mladenov, M.; Stoyanova, R.; Zhecheva, E.; Vassilev, S. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochem. Commun. 2001, 3, 410–416.

    CAS  Google Scholar 

  60. Takada, T.; Hayakawa, H.; Akiba, E. Preparation and crystal structure refinement of Li4Mn5O12 by the rietveld method. J. Solid State Chem. 1995, 115, 420–426.

    CAS  Google Scholar 

  61. Strobel, P.; Lambert-Andron, B. Crystallographic and magnetic structure of Li2MnO3. J. Solid State Chem. 1988, 75, 90–98.

    CAS  Google Scholar 

  62. Masquelier, C.; Tabuchi, M.; Ado, K.; Kanno, R.; Kobayashi, Y.; Maki, Y.; Nakamura, O.; Goodenough, J. B. Chemical and magnetic characterization of spinel materials in the LiMn2O4−Li2Mn4O9−Li4Mn5O12 system. J. Solid State Chem. 1996, 123, 255–266.

    CAS  Google Scholar 

  63. Moriya, T. Nuclear magnetic relaxation in antiferromagnetics. Prog. Theor. Phys. 1956, 16, 23–44.

    CAS  Google Scholar 

  64. Stoyanova, R.; Zhecheva, E.; Friebel, C. Ni3+−Ni2+ segregation in LixNi2−xO2 solid solutions (0.6 ≤ x <1). Solid State Ionics 1994, 73, 1–7.

    CAS  Google Scholar 

  65. Willett, R. D.; Wong, R. J. Experimental evidence for phonon modulation of antisymmetric exchange from the temperature dependence of EPR linewidths in (RNH3)2CuX4 salts. J. Magn. Reson. 1981, 42, 446–452.

    CAS  Google Scholar 

  66. Sun, R. H.; Jakes, P.; Eurich, S.; van Holt, D.; Yang, S.; Homberger, M.; Simon, U.; Kungl, H.; Eichel, R. A. Secondary-phase formation in spinel-type LiMn2O4-cathode materials for lithium-ion batteries: Quantifying trace amounts of Li2MnO3 by electron paramagnetic resonance spectroscopy. Appl. Magn. Reson. 2018, 49, 415–427.

    CAS  Google Scholar 

  67. Sun, R. H.; Jakes, P.; Taranenko, S.; Kungl, H.; Eichel, R. A. Monitoring the reaction between lithium manganese spinel and Li2MnO3 during heat treatment using electron paramagnetic resonance (EPR) spectroscopy. Solid State Ionics 2018, 325, 201–208.

    CAS  Google Scholar 

  68. Mallick, M.; Vitta, S. Magnetic behavior of Ni substituted LiCoO2-magnetization and electron paramagnetic resonance studies. Mater. Chem. Phys. 2017, 198, 266–274.

    CAS  Google Scholar 

  69. Moorhead-Rosenberg, Z.; Shin, D. W.; Chemelewski, K. R.; Goodenough, J. B.; Manthiram, A. Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Appl. Phys. Lett. 2012, 100, 213909.

    Google Scholar 

  70. Nakamura, T.; Yamada, Y.; Tabuchi, M. Magnetic and electrochemical studies on Ni2+-substituted Li−Mn spinel oxides. J. Appl. Phys. 2005, 98, 093905.

    Google Scholar 

  71. Niemöller, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. In operando EPR investigation of redox mechanisms in LiCoO2. Chem. Phys. Lett. 2019, 716, 231–236.

    Google Scholar 

  72. Takamatsu, D.; Orikasa, Y.; Mori, S.; Nakatsutsumi, T.; Yamamoto, K.; Koyama, Y.; Minato, T.; Hirano, T.; Tanida, H.; Arai, H. et al. Effect of an electrolyte additive of vinylene carbonate on the electronic structure at the surface of a lithium cobalt oxide electrode under battery operating conditions. J. Phys. Chem. C 2015, 119, 9791–9797.

    CAS  Google Scholar 

  73. van Zee, R. J.; Hamrick, Y. M.; Li, S.; Weltner, W. Jr. Cobalt, rhodium, and iridium dioxide molecules and Walsh-type rules. J. Phys. Chem. 1992, 96, 7247–7251.

    CAS  Google Scholar 

  74. Mizokawa, T.; Wakisaka, Y.; Sudayama, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Wadati, H.; Hawthorn, D. G.; Regier, T. Z.; Sawatzky, G. A. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phys. Rev. Lett. 2013, 111, 056404.

    CAS  Google Scholar 

  75. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 ≤ x < 1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3–4, 171–174.

    Google Scholar 

  76. McCalla, E.; Abakumov, A. M.; Saubanère, M.; Foix, D.; Berg, E. J.; Rousse, G.; Doublet, M. L.; Gonbeau, D.; Novák, P.; van Tendeloo, G. et al. Visualization of O−O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 2015, 350, 1516–1521.

    CAS  Google Scholar 

  77. Koga, H.; Croguennec, L.; Ménétrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 2013, 160, A786–A792.

    CAS  Google Scholar 

  78. Sathiya, M.; Leriche, J. B.; Salager, E.; Gourier, D.; Tarascon, J. M.; Vezin, H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 2015, 6, 6276.

    CAS  Google Scholar 

  79. Wang, J. Y.; Yang, M. C.; Zhao, C.; Hu, B.; Lou, X. B.; Geng, F. S.; Tong, W.; Hu, B. W.; Li, C. Unveiling the benefits of potassium doping on the structural integrity of Li-Mn-rich layered oxides during prolonged cycling by dual-mode EPR spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 24017–24025.

    CAS  Google Scholar 

  80. Niemöller, A.; Jakes, P.; Eurich, S.; Paulus, A.; Kungl, H.; Eichel, R. A.; Granwehr, J. Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy. J. Chem. Phys. 2018, 148, 014705.

    Google Scholar 

  81. Geng, F. S.; Yang, Q.; Li, C.; Hu, B.; Zhao, C.; Shen, M.; Hu, B. W. Operando EPR and EPR imaging study on a NaCrO2 cathode:Electronic property and structural degradation with Cr dissolution. J. Phys. Chem. Lett. 2021, 12, 781–786.

    CAS  Google Scholar 

  82. Tang, M. X.; Dalzini, A.; Li, X.; Feng, X. Y.; Chien, P. H.; Song, L. K.; Hu, Y. Y. Operando EPR for simultaneous monitoring of anionic and cationic redox processes in Li-rich metal oxide cathodes. J. Phys. Chem. Lett. 2017, 8, 4009–4016.

    CAS  Google Scholar 

  83. Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 2017, 16, 841–848.

    CAS  Google Scholar 

  84. Tang, M. X.; Bui, N. N.; Zheng, J.; Song, L. K.; Hu, Y. Y. Real-time monitoring of the lithiation process in organic electrode 7,7,8,8-tetracyanoquinodimethane by in situ EPR. J. Energy Chem. 2021, 60, 9–15.

    CAS  Google Scholar 

  85. Kulikov, I.; Panjwani, N. A.; Vereshchagin, A. A.; Spallek, D.; Lukianov, D. A.; Alekseeva, E. V.; Levin, O. V.; Behrends, J. Spins at work: Probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy. Energy Environ. Sci. 2022, 15, 3275–3290.

    CAS  Google Scholar 

  86. Bai, Y. F.; Wang, Z.; Qin, N.; Ma, D. T.; Fu, W. B.; Lu, Z. G.; Pan, X. B. Two-step redox in polyimide: Witness by in situ electron paramagnetic resonance in lithium-ion batteries. Angew. Chem. Int., Ed. 2023, 62, e202303162.

    CAS  Google Scholar 

  87. Guy, S. C.; Edwards, P. P. Observation of conduction-electron spin resonance in small particles of rubidium. Chem. Phys. Lett. 1982, 86, 150–155.

    CAS  Google Scholar 

  88. Feher, G.; Kip, A. F. Electron spin resonance absorption in metals. I. Experimental. Phys. Rev. 1955, 98, 337–348.

    CAS  Google Scholar 

  89. Dyson, F. J. Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev. 1955, 98, 349–359.

    CAS  Google Scholar 

  90. Pifer, J. H.; Magno, R. Conduction-electron spin resonance in a lithium film. Phys. Rev. B 1971, 3, 663–673.

    Google Scholar 

  91. Edmonds, R. N.; Harrison, M. R.; Edwards, P. P. Chapter 9. Conduction electron spin resonance in metallic systems. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 1985, 82, 265–308.

    CAS  Google Scholar 

  92. Niemöller, A.; Jakes, P.; Eichel, R. A.; Granwehr, J. EPR imaging of metallic lithium and its application to dendrite localisation in battery separators. Sci. Rep. 2018, 8, 14331.

    Google Scholar 

  93. Cherkasov, F. G.; Kharakhash’yan, E. G.; Medvedev, L. I.; Novosjelov, N. I.; Talanov, Y. I. Observation of intrinsic spinlattice relaxation of conduction electrons in metallic lithium. Phys. Lett. A 1977, 63, 339–341.

    Google Scholar 

  94. Dutoit, C. E.; Tang, M. X.; Gourier, D.; Tarascon, J. M.; Vezin, H.; Salager, E. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 2021, 12, 1410.

    CAS  Google Scholar 

  95. Montes, J. M.; Cuevas, F. G.; Cintas, J. Porosity effect on the electrical conductivity of sintered powder compacts. Appl. Phys. A 2008, 92, 375–380.

    CAS  Google Scholar 

  96. Li, Z. Q.; Huang, X. L.; Kong, L.; Qin, N.; Wang, Z. Y.; Yin, L. H.; Li, Y. Z.; Gan, Q. M.; Liao, K. M.; Gu, S. et al. Gradient nano-recipes to guide lithium deposition in a tunable reservoir for anode-free batteries. Energy Storage Mater. 2022, 45, 40–47.

    Google Scholar 

  97. Wandt, J.; Marino, C.; Gasteiger, H. A.; Jakes, P.; Eichel, R. A.; Granwehr, J. Operando electron paramagnetic resonance spectroscopy-formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy Environ. Sci. 2015, 8, 1358–1367.

    CAS  Google Scholar 

  98. Palomares, V.; Goñi, A.; Iturrondobeitia, A.; Lezama, L.; de Meatza, I.; Bengoechea, M.; Rojo, T. Structural, magnetic and electrochemical study of a new active phase obtained by oxidation of a LiFePO4/C composite. J. Mater. Chem. 2012, 22, 4735–4743.

    CAS  Google Scholar 

  99. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

    CAS  Google Scholar 

  100. Mogi, R.; Inaba, M.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583.

    CAS  Google Scholar 

  101. Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett. 2014, 14, 1405–1412.

    CAS  Google Scholar 

  102. Geng, F. S.; Yang, Q.; Li, C.; Shen, M.; Chen, Q.; Hu, B. W. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging. Chem. Mater. 2021, 33, 8223–8234.

    CAS  Google Scholar 

  103. Szczuka, C.; Ackermann, J.; Schleker, P. P. M.; Jakes, P.; Eichel, R. A.; Granwehr, J. Transient morphology of lithium anodes in batteries monitored by in operando pulse electron paramagnetic resonance. Commun. Mater. 2021, 2, 20.

    CAS  Google Scholar 

  104. Ingram, D. J. E.; Bennett, J. E. Paramagnetic resonance in activated carbon. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 545–547.

    CAS  Google Scholar 

  105. Zhou, X. R.; Zhuang, L.; Lu, J. T. Deducing the density of electronic states at the fermi level for lithiated carbons using combined electrochemical and electron spin resonance measurements. J. Phys. Chem. B 2003, 107, 7783–7787.

    CAS  Google Scholar 

  106. Matsumura, Y.; Wang, S.; Nakagawa, Y.; Yamaguchi, C. An electron-spin resonance study of lithium charged carbon electrodes. Synth. Met. 1997, 85, 1411–1412.

    CAS  Google Scholar 

  107. Alcántara, R.; Ortiz, G. F.; Lavela, P.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E. EPR, NMR, and electrochemical studies of surface-modified carbon microbeads. Chem. Mater. 2006, 18, 2293–2301.

    Google Scholar 

  108. Zhuang, L.; Lu, J. T.; Ai, X. P.; Yang, H. X. In-situ ESR study on electrochemical lithium intercalation into petroleum coke. J. Electroanal. Chem. 1995, 397, 315–319.

    Google Scholar 

  109. Wandt, J.; Jakes, P.; Granwehr, J.; Eichel, R. A.; Gasteiger, H. A. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries. Mater. Today 2018, 21, 231–240.

    CAS  Google Scholar 

  110. Basu, S.; Zeller, C.; Flanders, P. J.; Fuerst, C. D.; Johnson, W. D.; Fischer, J. E. Synthesis and properties of lithium-graphite intercalation compounds. Mater. Sci. Eng. 1979, 38, 275–283.

    CAS  Google Scholar 

  111. Tsuzuku, T. Anisotropic electrical conduction in relation to the stacking disorder in graphite. Carbon 1979, 17, 293–299.

    CAS  Google Scholar 

  112. Wang, B.; Le Fevre, L. W.; Brookfield, A.; McInnes, E. J. L.; Dryfe, R. A. W. Resolution of lithium deposition versus intercalation of graphite anodes in lithium ion batteries: An in situ electron paramagnetic resonance study. Angew. Chem., Int. Ed. 2021, 60, 21860–21867.

    CAS  Google Scholar 

  113. An, S. J.; Li, J. L.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52–76.

    CAS  Google Scholar 

  114. Lorie Lopez, J. L.; Grandinetti, P. J.; Co, A. C. Enhancing the realtime detection of phase changes in lithium-graphite intercalated compounds through derivative operando (dOp) NMR cyclic voltammetry. J. Mater. Chem. A 2018, 6, 231–243.

    CAS  Google Scholar 

  115. Sole, C.; Drewett, N. E.; Hardwick, L. J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite. Faraday Discuss. 2014, 172, 223–237.

    CAS  Google Scholar 

  116. Liu, Q. Q.; Petibon, R.; Du, C. Y.; Dahn, J. R. Effects of electrolyte additives and solvents on unwanted lithium plating in lithium-ion cells. J. Electrochem. Soc. 2017, 164, A1173–A1183.

    CAS  Google Scholar 

  117. Zhang, Z. Y.; Smith, K.; Jervis, R.; Shearing, P. R.; Miller, T. S.; Brett, D. J. L. Operando electrochemical atomic force microscopy of solid-electrolyte interphase formation on graphite anodes:The evolution of SEI morphology and mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 35132–35141.

    CAS  Google Scholar 

  118. Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery. Angew. Chem. Int. Ed. 2016, 55, 6892–6895.

    CAS  Google Scholar 

  119. Lin, Y.; Yang, Q.; Geng, F. S.; Feng, H.; Chen, M. D.; Hu, B. W. Suppressing singlet oxygen formation during the charge process of Li−O2 batteries with a Co3O4 solid catalyst revealed by operando electron paramagnetic resonance. J. Phys. Chem. Lett. 2021, 12, 10346–10352.

    CAS  Google Scholar 

  120. Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew. Chem., Int. Ed. 2011, 50, 2999–3002.

    CAS  Google Scholar 

  121. Adam, W.; Kazakov, D. V.; Kazakov, V. P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 2005, 105, 3371–3387.

    CAS  Google Scholar 

  122. Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69–A72.

    CAS  Google Scholar 

  123. Rosenthal, I.; Krishna, C. M.; Yang, G. C.; Kondo, T.; Riesz, P. A new approach for EPR detection of hydroxyl radicals by reaction with sterically hindered cyclic amines and oxygen. FEBS Lett. 1987, 222, 75–78.

    CAS  Google Scholar 

  124. Reinen, D.; Lindner, G. G. The nature of the chalcogen colour centres in ultramarine-type solids. Chem. Soc. Rev. 1999, 28, 75–84.

    CAS  Google Scholar 

  125. Wang, Q.; Zheng, J. M.; Walter, E.; Pan, H. L.; Lv, D. P.; Zuo, P. J.; Chen, H. H.; Deng, Z. D.; Liaw, B. Y.; Yu, X. Q. et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. J. Electrochem. Soc. 2015, 162, A474–A478.

    CAS  Google Scholar 

  126. Pan, M. G.; Lu, Y.; Lu, S. Y.; Yu, B.; Wei, J.; Liu, Y. Z.; Jin, Z. The dual role of bridging phenylene in an extended bipyridine system for high-voltage and stable two-electron storage in redox flow batteries. ACS Appl. Mater. Interfaces 2021, 13, 44174–44183.

    CAS  Google Scholar 

  127. Jones, A. E.; Ejigu, A.; Wang, B.; Adams, R. W.; Bissett, M. A.; Dryfe, R. A. W. Quinone voltammetry for redox-flow battery applications. J. Electroanal. Chem. 2022, 920, 116572.

    CAS  Google Scholar 

  128. Zhao, E. W.; Jónsson, E.; Jethwa, R. B.; Hey, D.; Lyu, D.; Brookfield, A.; Klusener, P. A. A.; Collison, D.; Grey, C. P. Coupled in situ NMR and EPR studies reveal the electron transfer rate and electrolyte decomposition in redox flow batteries. J. Am. Chem. Soc. 2021, 143, 1885–1895.

    CAS  Google Scholar 

  129. Zhao, E. W.; Liu, T.; Jónsson, E.; Lee, J.; Temprano, I.; Jethwa, R. B.; Wang, A. Q.; Smith, H.; Carretero-González, J.; Song, Q. L. et al. In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 2020, 579, 224–228.

    CAS  Google Scholar 

  130. Jing, Y.; Zhao, E. W.; Goulet, M. A.; Bahari, M.; Fell, E. M.; Jin, S. J.; Davoodi, A.; Jónsson, E.; Wu, M.; Grey, C. P. et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat. Chem. 2022, 14, 1103–1109.

    CAS  Google Scholar 

  131. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors. Chem. Rev. 2004, 104, 4245–4270.

    CAS  Google Scholar 

  132. Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744.

    CAS  Google Scholar 

  133. Griffin, J. M.; Forse, A. C.; Tsai, W. Y.; Taberna, P. L.; Simon, P.; Grey, C. P. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 2015, 14, 812–819.

    CAS  Google Scholar 

  134. Forse, A. C.; Griffin, J. M.; Merlet, C.; Carretero-Gonzalez, J.; Raji, A. R. O.; Trease, N. M.; Grey, C. P. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2017, 2, 16216.

    Google Scholar 

  135. Levi, M. D.; Salitra, G.; Levy, N.; Aurbach, D.; Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 2009, 8, 872–875.

    CAS  Google Scholar 

  136. Forse, A. C.; Griffin, J. M.; Presser, V.; Gogotsi, Y.; Grey, C. P. Ring current effects: Factors affecting the NMR chemical shift of molecules adsorbed on porous carbons. J. Phys. Chem. C 2014, 118, 7508–7514.

    CAS  Google Scholar 

  137. Wang, B.; Fielding, A. J.; Dryfe, R. A. W. In situ electrochemical electron paramagnetic resonance spectroscopy as a tool to probe electrical double layer capacitance. Chem. Commun. 2018, 54, 3827–3830.

    CAS  Google Scholar 

  138. Wang, B.; Fielding, A. J.; Dryfe, R. A. W. Electron paramagnetic resonance as a structural tool to study graphene oxide: Potential dependence of the EPR response. J. Phys. Chem. C 2019, 123, 22556–22563.

    CAS  Google Scholar 

  139. Cao, J. Y.; Wang, B.; He, P.; Vallés, C.; Peng, Y. D.; Derby, B.; Dryfe, R. A. W.; Kinloch, I. A. High-power energy storage from carbon electrodes using highly acidic electrolytes. J. Phys. Chem. C 2020, 124, 20701–20711.

    CAS  Google Scholar 

  140. Wang, B.; Likodimos, V.; Fielding, A. J.; Dryfe, R. A. W. In situ electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide. Carbon 2020, 160, 236–246.

    CAS  Google Scholar 

  141. Sterby, M.; Emanuelsson, R.; Mamedov, F.; Strømme, M.; Sjödin, M. Investigating electron transport in a PEDOT/Quinone conducting redox polymer with in situ methods. Electrochim. Acta 2019, 308, 277–284.

    CAS  Google Scholar 

  142. Kastening, B.; Hahn, M.; Rabanus, B.; Heins, M.; Zum Felde, U. Electronic properties and double layer of activated carbon. Electrochim. Acta 1997, 42, 2789–2799.

    CAS  Google Scholar 

  143. Panchenko, A.; Dilger, H.; Möller, E.; Sixt, T.; Roduner, E. In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications. J. Power Sources 2004, 127, 325–330.

    CAS  Google Scholar 

  144. Pecher, O.; Carretero-González, J.; Griffith, K. J.; Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 2017, 29, 213–242.

    CAS  Google Scholar 

  145. Murdock, B. E.; Armstrong, C. G.; Smith, D. E.; Tapia-Ruiz, N.; Toghill, K. E. Misreported non-aqueous reference potentials: The battery research endemic. Joule 2022, 6, 928–934.

    Google Scholar 

  146. Salager, E.; Sarou-Kanian, V.; Sathiya, M.; Tang, M. X.; Leriche, J. B.; Melin, P.; Wang, Z. L.; Vezin, H.; Bessada, C.; Deschamps, M. et al. Solid-state NMR of the family of positive electrode materials Li2Ru1−ySnyO3 for lithium-ion batteries. Chem. Mater. 2014, 26, 7009–7019.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22179145, 21975287, and 22138013), Taishan Scholars Program of Shandong Province (No. tsqn20221117), the startup support grant from China University of Petroleum (East China) (No. 27RA2204027), Shandong Provincial Natural Science Foundation (No. ZR2020ZD08), Shandong Province Postdoctoral Innovative Talent Support Program (No. SDBX2022034), and Qingdao Postdoctoral Innovation Project (No. QDBSH20220202003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Li or Han Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Wang, W., Sun, K. et al. Developing in situ electron paramagnetic resonance characterization for understanding electron transfer of rechargeable batteries. Nano Res. 16, 11992–12012 (2023). https://doi.org/10.1007/s12274-023-5855-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5855-z

Keywords

Navigation