Skip to main content
Log in

All optical artificial synapses based on long-afterglow material for optical neural network

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Artificial neural network with broad application prospect has attracted particular attention due to the promise of solving the memory wall bottleneck. The neural devices that mix light and electricity provide more degrees of freedom for the design of artificial neural network, but they still do not get rid of the shackles that the response signal needs circuit to transmission. The exploration of all-optical neural devices (optical signal input and output) is expected to solve this problem. Here, an all-optical synaptic device simply based on a long-afterglow material is reported. The optical properties of the all-optical synaptic device are similar to the responses in biological synapses. Unique image displays and memory functions can be achieved by combining all-optical synaptic arrays with synaptic memory behavior. Furthermore, the optical summation of all-optical synaptic array pixels can be completed by combining the focusing characteristics of convex lens, which realizes the photon transmission after preprocessing multiple input signals. Particularly, the simple single-layer structure of all-optical synapses with polydimethylsiloxane (PDMS) as the carrier has high plasticity and is expected to achieve large-scale preparation. This work enriches the diversity of artificial synapses and shows the huge development potential of photoelectric artificial neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutorials 2016, 18, 1617–1655.

    Google Scholar 

  2. Wu, X. D.; Zhu, X. Q.; Wu, G. Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014, 26, 97–107.

    Google Scholar 

  3. Huh, W.; Lee, D.; Lee, C. H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 2020, 32, 2002092.

    CAS  Google Scholar 

  4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.

    CAS  Google Scholar 

  5. Yang, J. T.; Ge, C.; Du, J. Y.; Huang, H. Y.; He, M.; Wang, C.; Lu, H. B.; Yang, G. Z.; Jin, K. J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548.

    Google Scholar 

  6. Xu, W. T.; Min, S. Y.; Hwang, H.; Lee, T. W. Organic core—sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2016, 2, e1501326.

    Google Scholar 

  7. Wang, Y.; Lv, Z. Y.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.

    Google Scholar 

  8. He, Y. L.; Nie, S.; Liu, R.; Jiang, S. S.; Shi, Y.; Wan, Q. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 2019, 31, 1900903.

    Google Scholar 

  9. Yan, X. B.; Zhang, L.; Chen, H. W.; Li, X. Y.; Wang, J. J.; Liu, Q.; Lu, C.; Chen, J. S.; Wu, H. Q.; Zhou, P. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 2018, 28, 1803728.

    Google Scholar 

  10. Hasegawa, T.; Terabe, K.; Tsuruoka, T.; Aono, M. Atomic switch: Atom/ion movement controlled devices for beyond von-Neumann computers. Adv. Mater. 2012, 24, 252–267.

    CAS  Google Scholar 

  11. Oh, S.; Huang, Z. S.; Shi, Y. H.; Kuzum, D. The impact of resistance drift of phase change memory (PCM) synaptic devices on artificial neural network performance. IEEE Electron Device Lett. 2019, 40, 1325–1328.

    CAS  Google Scholar 

  12. Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186.

    CAS  Google Scholar 

  13. Huang, W. Y.; Chang, Y. C.; Sie, Y. F.; Yu, C. R.; Wu, C. Y.; Hsu, Y. L. Bio-cellulose substrate for fabricating fully biodegradable resistive random access devices. ACS Appl. Polym. Mater. 2021, 3, 4478–4484.

    CAS  Google Scholar 

  14. Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

    CAS  Google Scholar 

  15. Yan, X. B.; Wang, K. Y.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L.; Li, X. Y.; Xiao, Z. A.; Zhao, Q. L. et al. A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 2019, 15, 1900107.

    Google Scholar 

  16. Wang, F. D.; Yu, M. X.; Chen, X. D.; Li, J. Q.; Zhang, Z. C.; Li, Y.; Zhang, G. X.; Shi, K.; Shi, L.; Zhang, M. et al. Optically modulated dual-mode memristor arrays based on core—shell CsPbBr3@graphdiyne nanocrystals for fully memristive neuromorphic computing hardware. SmartMat 2023, 4, e1135.

    CAS  Google Scholar 

  17. Yang, F. X.; Sun, L. J.; Duan, Q. X.; Dong, H. L.; Jing, Z. K.; Yang, Y. C.; Li, R. J.; Zhang, X. T.; Hu, W. P.; Chua, L. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2021, 2, 99–108.

    CAS  Google Scholar 

  18. Kim, Y.; Lee, K.; Lee, J.; Jang, S.; Kim, H.; Lee, H.; Lee, S. W.; Wang, G.; Park, C. Bird-inspired self-navigating artificial synaptic compass. ACS Nano 2021, 15, 20116–20126.

    CAS  Google Scholar 

  19. Shi, J. L.; Jie, J. S.; Deng, W.; Luo, G.; Fang, X. C.; Xiao, Y. L.; Zhang, Y. J.; Zhang, X. J.; Zhang, X. H. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 2022, 34, 2200380.

    CAS  Google Scholar 

  20. Gao, J.; Zheng, Y.; Yu, W.; Wang, Y. N.; Jin, T. Y.; Pan, X.; Loh, K. P.; Chen, W. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat 2021, 2, 88–98.

    CAS  Google Scholar 

  21. Chen, Q. Z.; Zhang, X. H.; Liu, Y. Q.; Yan, Y. J.; Yu, R. J.; Wang, X. M.; Lin, Z. N.; Zeng, H. A.; Liu, L. J.; Chen, H. P. et al. Neuromorphic display system for intelligent display. Nano Energy 2022, 94, 106931.

    CAS  Google Scholar 

  22. Liu, Y. Q.; Li, E. L.; Wang, X. M.; Chen, Q. Z.; Zhou, Y. L.; Hu, Y. Y.; Chen, G. X.; Chen, H. P.; Guo, T. L. Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy 2020, 78, 105403.

    CAS  Google Scholar 

  23. Gao, H. K.; Miao, Z. G.; Hu, W. P.; Dong, H. L. Research on key materials and devices of organic light-emitting transistors. Acta Chim. Sin. 2022, 80, 327–339.

    CAS  Google Scholar 

  24. Yan, X. B.; Zhao, J. H.; Liu, S.; Zhou, Z. Y.; Liu, Q.; Chen, J. S.; Liu, X. Y. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 2018, 28, 1705320.

    Google Scholar 

  25. Zheng, Q.; Ren, P. Y.; Peng, Y. H.; Zhou, W. C.; Yin, Y. L.; Wu, H.; Gong, W. T.; Wang, W. K.; Tang, D. S.; Zou, B. S. In-plane anisotropic Raman response and electrical conductivity with robust electron—photon and electron—phonon interactions of air stable MoO2 nanosheets. J. Phys. Chem. Lett. 2019, 10, 2182–2190.

    CAS  Google Scholar 

  26. Siddiqui, S. A.; Dutta, S.; Tang, A.; Liu, L. Q.; Ross, C. A.; Baldo, M. A. Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators. Nano Lett. 2020, 20, 1033–1040.

    CAS  Google Scholar 

  27. Wang, X. M.; Li, E. L.; Liu, Y. Q.; Lan, S. Q.; Yang, H. H.; Yan, Y. J.; Shan, L. T.; Lin, Z. X.; Chen, H. P.; Guo, T. L. Stretchable vertical organic transistors and their applications in neurologically systems. Nano Energy 2021, 90, 106497.

    CAS  Google Scholar 

  28. Zhao, P. F.; Ji, R. X.; Lao, J.; Xu, W.; Jiang, C. L.; Luo, C. H.; Lin, H. C.; Peng, H.; Duan, C. G. Two-terminal organic optoelectronic synapse based on poly(3-hexylthiophene) for neuromorphic computing. Org. Electron. 2022, 100, 106390.

    CAS  Google Scholar 

  29. Yu, R. J.; Li, E. L.; Wu, X. M.; Yan, Y. J.; He, W. X.; He, L. H.; Chen, J. W.; Chen, H. P.; Guo, T. L. Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 15446–15455.

    CAS  Google Scholar 

  30. Gao, C. S.; Yang, H. H.; Li, E. L.; Yan, Y. J.; He, L. H.; Chen, H. P.; Lin, Z. X.; Guo, T. L. Heterostructured vertical organic transistor for high-performance optoelectronic memory and artificial synapse. ACS Photonics 2021, 8, 3094–3103.

    CAS  Google Scholar 

  31. Kim, S. G.; Kim, S. H.; Park, J.; Kim, G. S.; Park, J. H.; Saraswat, K. C.; Kim, J.; Yu, H. Y. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse. ACS Nano 2019, 13, 10294–10300.

    CAS  Google Scholar 

  32. Tang, J.; He, C. L.; Tang, J. S.; Yue, K.; Zhang, Q. T.; Liu, Y. Z.; Wang, Q. Q.; Wang, S. P.; Li, N.; Shen, C. et al. A reliable all-2D materials artificial synapse for high energy-efficient neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2011083.

    CAS  Google Scholar 

  33. Jin, C. X.; Liu, W. R.; Xu, Y. C.; Huang, Y. L.; Nie, Y. L.; Shi, X. F.; Zhang, G. M.; He, P.; Zhang, J.; Cao, H. T. et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Lett. 2022, 22, 3372–3379.

    CAS  Google Scholar 

  34. Zhao, T. S.; Zhao, C.; Xu, W. Y.; Liu, Y. N.; Gao, H.; Mitrovic, I. Z.; Lim, E. G.; Yang, L.; Zhao, C. Z. Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 2021, 31, 2106000.

    CAS  Google Scholar 

  35. Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

    Google Scholar 

  36. Zhao, P. F.; Ji, R. X.; Lao, J.; Jiang, C. L.; Tian, B. B.; Luo, C. H.; Lin, H. C.; Peng, H.; Duan, C. G. Multifunctional two-terminal optoelectronic synapse based on zinc oxide/poly(3-hexylthiophene) heterojunction for neuromorphic computing. ACS Appl. Polym. Mater. 2022, 4, 5688–5695.

    Google Scholar 

  37. Chen, C. S.; He, Y. L.; Mao, H. W.; Zhu, L.; Wang, X. J.; Zhu, Y.; Zhu, Y. X.; Shi, Y.; Wan, C. J.; Wan, Q. A photoelectric spiking neuron for visual depth perception. Adv. Mater. 2022, 34, 2201895.

    CAS  Google Scholar 

  38. Xu, Y. C.; Zhang, G. M.; Liu, W. R.; Jin, C. X.; Nie, Y. L.; Sun, J.; Yang, J. L. Flexible multiterminal photoelectronic neurotransistors based on self-assembled rubber semiconductors for spatiotemporal information processing. SmartMat 2023, 4, e1162.

    CAS  Google Scholar 

  39. Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.

    CAS  Google Scholar 

  40. Lee, T. J.; Yun, K. R.; Kim, S. K.; Kim, J. H.; Jin, J.; Sim, K. B.; Lee, D. H.; Hwang, G. W.; Seong, T. Y. Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 2021, 33, 2105485.

    CAS  Google Scholar 

  41. Zeng, H. A.; Chen, Q. Z.; Shan, L. T.; Yan, Y. J.; Gao, C. S.; Lu, W. J.; Chen, H. P.; Guo, T. L. A light-emitting electrochemical artificial synapse with dual output of photoelectric signals. Sci. China Mater. 2022, 65, 2511–2520.

    CAS  Google Scholar 

  42. Bian, H. Y.; Qin, X.; Wu, Y. M.; Yi, Z. G.; Liu, S. R.; Wang, Y.; Brites, C. D. S.; Carlos, L. D.; Liu, X. G. Multimodal tuning of synaptic plasticity using persistent luminescent memitters. Adv. Mater. 2022, 34, 2101895.

    CAS  Google Scholar 

  43. Gao, H. K.; Miao, Z. G.; Qin, Z. S.; Yang, J. X.; Wang, T. Y.; Gao, C.; Dong, H. L.; Hu, W. P. Redistributed current density in lateral organic light-emitting transistors enabling uniform area emission with good stability and arbitrary tunability. Adv. Mater. 2022, 34, 2108795.

    CAS  Google Scholar 

  44. Stelzer, F.; Röhm, A.; Vicente, R.; Fischer, I.; Yanchuk, S. Deep neural networks using a single neuron: Folded-in-time architecture using feedback-modulated delay loops. Nat. Commun. 2021, 12, 5164.

    CAS  Google Scholar 

  45. Chen, Y. S.; Wang, H. L.; Luo, F.; Montes-García, V.; Liu, Z. Y.; Samorì, P. Nanofloating gate modulated synaptic organic light-emitting transistors for reconfigurable displays. Sci. Adv. 2022, 8, eabq4824.

    CAS  Google Scholar 

  46. Liang, K.; Wang, R.; Huo, B. B.; Ren, H. H.; Li, D. W.; Wang, Y.; Tang, Y. J.; Chen, Y. T.; Song, C. Y.; Li, F. F. et al. Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano 2022, 16, 8651–8661.

    CAS  Google Scholar 

  47. Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

    CAS  Google Scholar 

  48. John, R. A.; Liu, F. C.; Chien, N. A.; Kulkarni, M. R.; Zhu, C.; Fu, Q. D.; Basu, A.; Liu, Z.; Mathews, N. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 2018, 30, 1800220.

    Google Scholar 

  49. Jha, P. Effect of UV irradiation on different types of luminescence of SrAl2O4:Eu,Dy phosphors. Luminescence 2016, 31, 1302–1305.

    CAS  Google Scholar 

  50. Jha, P.; Chandra, B. P. Mechanoluminescence of SrAl2O4:Eu,Dy nanophosphors induced by low impact velocity. Luminescence 2017, 32, 171–176.

    CAS  Google Scholar 

  51. Reese, W. M.; Burch, P.; Korpusik, A. B.; Liu, S. E.; Loskill, P.; Messersmith, P. B.; Healy, K. E. Facile macrocyclic polyphenol barrier coatings for PDMS microfluidic devices. Adv. Funct. Mater. 2020, 30, 2001274.

    CAS  Google Scholar 

  52. Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

    Google Scholar 

  53. Yu, F.; Zhu, L. Q.; Gao, W. T.; Fu, Y. M.; Xiao, H.; Tao, J.; Zhou, J. M. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886.

    CAS  Google Scholar 

  54. Lee, Y. R.; Trung, T. Q.; Hwang, B. U.; Lee, N. E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 2020, 11, 2753.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No. U21A20497), the Natural Science Foundation for Distinguished Young Scholars of Fujian Province (No. 2020J06012), the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (No. 2021ZZ129), and the Joint Funds for the innovation of science and Technology, Fujian province (No. 2021Y9074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huipeng Chen or Rui Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Chen, Q., Zeng, H. et al. All optical artificial synapses based on long-afterglow material for optical neural network. Nano Res. 16, 10004–10010 (2023). https://doi.org/10.1007/s12274-023-5566-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5566-5

Keywords

Navigation