Skip to main content
Log in

Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoscale thin-film composite (TFC) polyamide membranes are highly desirable for desalination owing to their excellent separation performance. It is a permanent pursuit to further improve the water flux of membrane without deteriorating the salt rejection. Herein, we fabricated a high-performance polyamide membrane with nanoscale structures through introducing multifunctional crown ether interlayer on the porous substrate impregnated with m-phenylenediamine. The crown ether interlayer can reduce the diffusion of amine monomers to reaction interface influenced by its interaction with m-phenylenediamine and the spatial shielding effect, leading to a controlled interfacial polymerization (IP) reaction. Besides, crown ether with intrinsic cavity is also favorable to adjust the IP process and the microstructure of polyamide layer. Since the outer surface of the nanocavity is lipophilic, crown ether has good solvency with the organic phase, thus attracting more trimesoyl chloride molecules to the interlayer and promoting the IP reaction in the confined space. As a result, a nanoscale polyamide membrane with an ultrathin selective layer of around 50 nm is obtained. The optimal TFC polyamide membrane at crown ether concentration of 0.25 wt.% exhibits a water flux of 61.2 L·m−2·h−1, which is 364% of the pristine TFC membrane, while maintaining a rejection of above 97% to NaCl. The development of the tailor-made nanoscale polyamide membrane via constructing multifunctional crown ether interlayer provides a straightforward route to fabricate competitive membranes for highly efficient desalination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y.; Li, S.; Zhang, K. Influence of hydrophilic carbon dots on polyamide thin film nanocomposite reverse osmosis membranes. J. Membr. Sci. 2017, 537, 42–53.

    CAS  Google Scholar 

  2. Ali, M. E. A.; Wang, L. Y.; Wang, X. Y.; Feng, X. S. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 2016, 386, 67–76.

    CAS  Google Scholar 

  3. Kaldellis, J. K.; Kondili, E. M. The water shortage problem in the Aegean archipelago islands: Cost-effective desalination prospects. Desalination 2007, 216, 123–138.

    CAS  Google Scholar 

  4. Meng, S.; Greenlee, L. F.; Shen, Y. R.; Wang, E. G. Basic science of water: Challenges and current status towards a molecular picture. Nano Res. 2015, 8, 3085–3110.

    CAS  Google Scholar 

  5. Gin, D. L.; Noble, R. D. Designing the next generation of chemical separation membranes. Science 2011, 332, 674–676.

    CAS  Google Scholar 

  6. Ji, Y. L.; An, Q. F.; Guo, Y. S.; Hung, W. S.; Lee, K. R.; Gao, C. J. Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles. J. Mater. Chem. A 2016, 4, 4224–4231.

    CAS  Google Scholar 

  7. Jia, F. C.; Xiao, X.; Nashalian, A.; Shen, S.; Yang, L.; Han, Z. Y.; Qu, H. J.; Wang, T. M.; Ye, Z.; Zhu, Z. J. et al. Advances in graphene oxide membranes for water treatment. Nano Res. 2022, 15, 6636–6654.

    CAS  Google Scholar 

  8. Ni, L.; Meng, J. Q.; Li, X. G.; Zhang, Y. F. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J. Membr. Sci. 2014, 451, 205–215.

    CAS  Google Scholar 

  9. Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348.

    CAS  Google Scholar 

  10. Xie, W.; Geise, G. M.; Freeman, B. D.; Lee, H. S.; Byun, G.; McGrath, J. E. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Membr. Sci. 2012, 403-404, 152–161.

    Google Scholar 

  11. Lohrasebi, A.; Rikhtehgaran, S. Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 2018, 11, 2229–2236.

    CAS  Google Scholar 

  12. Cadotte, J. E.; Petersen, R. J.; Larson, R. E.; Erickson, E. E. A new thin-film composite seawater reverse osmosis membrane. Desalination 1980, 32, 25–31.

    Google Scholar 

  13. Misdan, N.; Lau, W. J.; Ismail, A. F. Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane-current development, challenges and future prospects. Desalination 2012, 287, 228–237.

    CAS  Google Scholar 

  14. Kang, G. D.; Cao, Y. M. Development of antifouling reverse osmosis membranes for water treatment: A review. Water Res. 2012, 46, 584–600.

    CAS  Google Scholar 

  15. Jiang, Z. W.; Karan, S.; Livingston, A. G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 2018, 30, 1705973.

    Google Scholar 

  16. Lundstrom, J. E. Sorption, desorption and diffusion processes in membrane permeation. J. Membr. Sci. 2015, 486, 138–150.

    CAS  Google Scholar 

  17. Lu, D.; Yao, Z. K.; Jiao, L.; Waheed, M.; Sun, Z. L.; Zhang, L. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane. Adv. Membr. 2022, 2, 100032.

    Google Scholar 

  18. Song, Y.; Sun, P.; Henry, L. L.; Sun, B. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J. Membr. Sci. 2005, 251, 67–79.

    CAS  Google Scholar 

  19. Jin, Y.; Su, Z. H. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films. J. Membr. Sci. 2009, 330, 175–179.

    CAS  Google Scholar 

  20. Tang, B. B.; Zou, C.; Wu, P. Y. Study on a novel polyester composite nanofiltration membrane by interfacial polymerization. II. The role of lithium bromide in the performance and formation of composite membrane. J. Membr. Sci. 2010, 365, 276–285.

    CAS  Google Scholar 

  21. Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 2003, 19, 4791–4797.

    CAS  Google Scholar 

  22. Liang, Y. Z.; Zhu, Y. Z.; Liu, C.; Lee, K. R.; Hung, W. S.; Wang, Z. Y.; Li, Y. Y.; Elimelech, M.; Jin, J.; Lin, S. H. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 2020, 11, 2015.

    CAS  Google Scholar 

  23. Freger, V. Kinetics of film formation by interfacial polycondensation. Langmuir 2005, 21, 1884–1894.

    CAS  Google Scholar 

  24. Yang, Z.; Zhou, Z. W.; Guo, H.; Yao, Z. K.; Ma, X. H.; Song, X. X.; Feng, S. P.; Tang, C. Y. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: Toward enhanced nanofiltration performance. Environ. Sci. Technol. 2018, 52, 9341–9349.

    CAS  Google Scholar 

  25. Heidari, A. A.; Mahdavi, H.; Khodaei Kahriz, P. Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine. J. Membr. Sci. 2021, 634, 119406.

    CAS  Google Scholar 

  26. Wang, D.; Li, S. Y.; Li, F. L.; Li, J. M.; Li, N.; Wang, Z. N. Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. Sci. Total Environ. 2021, 770, 145370.

    CAS  Google Scholar 

  27. Zhang, X.; Lv, Y.; Yang, H. C.; Du, Y.; Xu, Z. K. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance. ACS Appl. Mater. Interfaces 2016, 8, 32512–32519.

    CAS  Google Scholar 

  28. Chen, Y. Q.; Song, X. J.; Zhang, N.; Zhang, X. Q.; Su, G.; Huang, M. H.; Jiang, H. Q. Polyethyleneimine-mediated polyamide composite membrane with high perm-selectivity for forward osmosis. Macromol. Mater. Eng. 2021, 306, 2000818.

    CAS  Google Scholar 

  29. Li, Y.; Zhao, J. Q.; Yuan, Y. C.; Shi, C. Q.; Liu, S. M.; Yan, S. J.; Zhao, Y.; Zhang, M. Q. Polyimide/crown ether composite films with necklace-like supramolecular structure and improved mechanical, dielectric, and hydrophobic properties. Macromolecules 2015, 48, 2173–2183.

    CAS  Google Scholar 

  30. Shen, L.; Yi, M.; Japip, S.; Han, C.; Tian, L.; Lau, C. H.; Wang, Y. Breaking through permeability-selectivity trade-off of thin-film composite membranes assisted with crown ethers. AIChE J. 2021, 67, el7173.

    Google Scholar 

  31. Tian, C.; Fielden, S. D. P.; Whitehead, G. F. S.; Vitorica-Yrezabal, I. J.; Leigh, D. A. Weak functional group interactions revealed through metal-free active template rotaxane synthesis. Nat. Commun. 2020, 11, 744.

    CAS  Google Scholar 

  32. Song, X. J.; Wang, Y. C.; Jiao, C. L.; Huang, M. H.; Wang, G. H.; Jiang, H. Q. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. J. Membr. Sci. 2020, 597, 117783.

    CAS  Google Scholar 

  33. Wang, W. J.; Hao, J. L.; Sun, Q.; Zhao, M. Q.; Liu, H. Y.; Li, C.; Sui, X. Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting. Nano Res., in press, https://doi.org/10.1007/s12274-022-4634-6.

  34. Shen, L.; Zuo, J.; Wang, Y. Tris(2-aminoethyl)amine in-titu modified thin-film composite membranes for forward osmosis applications. J. Membr. Sci. 2017, 537, 186–201.

    CAS  Google Scholar 

  35. Wang, Y.; Liang, R. Z.; Jia, T. Z.; Cao, X. L.; Wang, Q.; Cao, J. R.; Li, S.; Shi, Q. X.; Isaacs, L.; Sun, S. P. Voltage-gated membranes incorporating cucurbit[n]uril molecular containers for molecular nanofiltration. J. Am. Chem. Soc. 2022, 144, 6483–6492.

    CAS  Google Scholar 

  36. Tang, M. J.; Liu, M. L.; Wang, D. A.; Shao, D. D.; Wang, H. J.; Cui, Z. L.; Cao, X. L.; Sun, S. P. Precisely patterned nanostrand surface of cucurbituril[n]-based nanofiltration membranes for effective alcohol-water condensation. Nano Lett. 2020, 20, 2717–2723.

    CAS  Google Scholar 

  37. Ng, Z. C.; Lau, W. J.; Lai, G. S.; Meng, J. Q.; Gao, H. H.; Ismail, A. F. Facile fabrication of polyethyleneimine interlayer-assisted graphene oxide incorporated reverse osmosis membranes for water desalination. Desalination 2022, 526, 115502.

    CAS  Google Scholar 

  38. Gu, J. E.; Lee, J. S.; Park, S. H.; Kim, I. T.; Chan, E. P.; Kwon, Y. N.; Lee, J. H. Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Appl. Surf. Sci. 2015, 356, 659–667.

    CAS  Google Scholar 

  39. Gan, B. W.; Qi, S. R.; Song, X. X.; Yang, Z.; Tang, C. Y.; Cao, X. Z.; Zhou, Y.; Gao, C. J. Ultrathin polyamide nanofilm with an asymmetrical structure: A novel strategy to boost the permeance of reverse osmosis membranes. J. Membr. Sci. 2020, 612, 118402.

    CAS  Google Scholar 

  40. Jiang, C.; Fei, Z. H.; Zhang, M. M.; Ma, X. P.; Hou, Y. F. Preparation of advanced reverse osmosis membrane by a wettability-transformable interlayer combining with N-acyl imidazole chemistry. J. Membr. Sci. 2022, 644, 120085.

    CAS  Google Scholar 

  41. Shen, Q.; Lin, Y. Q.; Ueda, T.; Zhang, P. F.; Jia, Y. D.; Istirokhatun, T.; Song, Q. Q.; Guan, K. C.; Yoshioka, T.; Matsuyama, H. The underlying mechanism insights into support polydopamine decoration toward ultrathin polyamide membranes for highperformance reverse osmosis. J. Membr. Sci. 2022, 646, 120269.

    CAS  Google Scholar 

  42. Cheng, X. J.; Peng, Y.; Li, S. X.; Su, B. W. Alginate hydrogel interlayer assisted interfacial polymerization for enhancing the separation performance of reverse osmosis membrane. J. Membr. Sci. 2021, 638, 119680.

    CAS  Google Scholar 

  43. Shin, M. G.; Choi, W.; Lee, J. H. Highly selective and pH-stable reverse osmosis membranes prepared via layered interfacial polymerization. Membranes 2022, 12, 156.

    CAS  Google Scholar 

  44. Liu, C.; Liu, Y. W.; Guo, Y. Q.; Wang, C.; Hu, Z.; Zhang, C. H. High-hydrophilic and salt rejecting PA-g/co-PVP RO membrane via bionic sand-fixing grass for pharmaceutical wastewater treatment. Chem. Eng. J. 2019, 357, 269–279.

    CAS  Google Scholar 

  45. Mamah, S. C.; Goh, P. S.; Ismail, A. F.; Suzaimi, N. D.; Ahmad, N. A.; Lee, W. J. Flux enhancement in reverse osmosis membranes induced by synergistic effect of incorporated palygorskite/chitin hybrid nanomaterial. J. Environ. Chem. Eng. 2021, 9, 105432.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for funding and supporting this work through Research Partnership Program (No. RP-21-09-75). The authors gratefully thank X. Q. Zhang for her kind help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangju Song or Heqing Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Song, X., Huang, M. et al. Crown ether interlayer-modulated polyamide membrane with nanoscale structures for efficient desalination. Nano Res. 16, 6153–6159 (2023). https://doi.org/10.1007/s12274-022-5196-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5196-3

Keywords

Navigation