Skip to main content
Log in

Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Amorphous nanomaterials with long-range disordered structures could possess distinct properties and promising applications, especially in catalysis, as compared with their conventional crystalline counterparts. It is imperative to achieve the controlled preparation of amorphous noble metal-based nanomaterials for the exploration of their phase-dependent applications. Here, we report a facile wet-chemical reduction strategy to synthesize various amorphous multimetallic Pd-based nanomaterials, including PdRu, PdRh, and PdRuRh. The phase-dependent catalytic performances of distinct Pd-based nanomaterials towards diverse catalytic applications have been demonstrated. Specifically, the usage of PdRu nanocatalysts with amorphous and crystalline face-centered cubic (fcc) phases can efficiently switch the ring-opening route of styrene oxide to obtain different products with high selectivity through alcoholysis reaction and hydrogenation reaction, respectively. Moreover, when used as an electrocatalyst for hydrogen evolution reaction (HER), the synthesized amorphous PdRh nanocatalyst exhibits low overpotential and high turnover frequency values, outperforming its crystalline fcc counterpart and most of the reported Pd-based HER electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, Y. F.; Lyu, Z.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

    Article  CAS  Google Scholar 

  2. Yang, T. H.; Ahn, J.; Shi, S.; Wang, P.; Gao, R. Q.; Qin, D. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 2021, 121, 796–833.

    Article  CAS  Google Scholar 

  3. Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

    Article  CAS  Google Scholar 

  4. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

    Article  CAS  Google Scholar 

  5. Cao, L. N.; Liu, W.; Luo, Q. Q.; Yin, R. T.; Wang, B.; Weissenrieder, J.; Soldemo, M.; Yan, H.; Lin, Y.; Sun, Z. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 2019, 565, 631–635.

    Article  CAS  Google Scholar 

  6. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

  7. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  CAS  Google Scholar 

  8. Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

    Article  CAS  Google Scholar 

  9. Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

    Article  CAS  Google Scholar 

  10. Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.

    Article  CAS  Google Scholar 

  11. Zhao, M.; Xia, Y. N. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 2020, 5, 440–459.

    Article  CAS  Google Scholar 

  12. Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

    Article  CAS  Google Scholar 

  13. Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

    Article  CAS  Google Scholar 

  14. Liang, J. Z.; Ge, Y. Y.; He, Z.; Yun, Q. B.; Liu, G. G.; Lu, S. Y.; Zhai, L.; Huang, B.; Zhang, H. Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Res., in press, https://doi.org/10.1007/s12274-021-4007-6.

  15. Zhao, H. W.; Li, F. S.; Wang, S. X.; Guo, L. Wet chemical synthesis of amorphous nanomaterials with well-defined morphologies. Acc. Mater. Res. 2021, 2, 804–815.

    Article  CAS  Google Scholar 

  16. Ge, J. J.; Yin, P. Q.; Chen, Y.; Cheng, H. F.; Liu, J. W.; Chen, B.; Tan, C. L.; Yin, P. F.; Zheng, H. X.; Li, Q. Q. et al. Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis. Adv. Mater. 2021, 33, 2006711.

    Article  CAS  Google Scholar 

  17. Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

    Article  Google Scholar 

  18. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Article  Google Scholar 

  19. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    Article  CAS  Google Scholar 

  20. Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

    Article  CAS  Google Scholar 

  21. Zhou, M.; Li, C.; Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chem. Rev. 2021, 121, 736–795.

    Article  CAS  Google Scholar 

  22. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Article  CAS  Google Scholar 

  23. Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

    Article  CAS  Google Scholar 

  24. Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

    Article  Google Scholar 

  25. Duval, M.; Deboos, V.; Hallonet, A.; Sagorin, G.; Denicourt-Nowicki, A.; Roucoux, A. Selective palladium nanoparticles-catalyzed hydrogenolysis of industrially targeted epoxides in water. J. Catal. 2021, 396, 261–268.

    Article  CAS  Google Scholar 

  26. Zhou, X. C.; Ma, Y. B.; Ge, Y. Y.; Zhu, S. Q.; Cui, Y.; Chen, B.; Liao, L. W.; Yun, Q. B.; He, Z.; Long, H. W. et al. Preparation of Au@Pd core—shell nanorods with fcc-2H-fcc heterophase for highly efficient electrocatalytic alcohol oxidation. J. Am. Chem. Soc. 2022, 144, 547–555.

    Article  CAS  Google Scholar 

  27. Ge, Y. Y.; Wang, X. X.; Huang, B.; Huang, Z. Q.; Chen, B.; Ling, C. Y.; Liu, J. W.; Liu, G. H.; Zhang, J.; Wang, G. et al. Seeded synthesis of unconventional 2H-phase Pd alloy nanomaterials for highly efficient oxygen reduction. J. Am. Chem. Soc. 2021, 143, 17292–17299.

    Article  CAS  Google Scholar 

  28. Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, 1902964.

    Article  CAS  Google Scholar 

  29. Corthey, G.; Rubert, A. A.; Picone, A. L.; Casillas, G.; Giovanetti, L. J.; Ramallo-López, J. M.; Zelaya, E.; Benitez, G. A.; Requejo, F. G.; José-Yacamán, M. et al. New insights into the chemistry of thiolate-protected palladium nanoparticles. J. Phys. Chem. C 2012, 116, 9830–9837.

    Article  CAS  Google Scholar 

  30. Lu, W.; Wang, B.; Wang, K. D.; Wang, X. P.; Hou, J. G. Synthesis and characterization of crystalline and amorphous palladium nanoparticles. Langmuir 2003, 19, 5887–5891.

    Article  CAS  Google Scholar 

  31. Corthey, G.; Olmos-Asar, J. A.; Casillas, G.; Mariscal, M. M.; Mejía-Rosales, S.; Azcárate, J. C.; Larios, E.; José-Yacamán, M.; Salvarezza, R. C.; Fonticelli, M. H. Influence of capping on the atomistic arrangement in palladium nanoparticles at room temperature. J. Phys. Chem. C 2014, 118, 24641–24647.

    Article  CAS  Google Scholar 

  32. Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M. M.; Mangeney, C.; Villain, F.; Fiévet, F. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies. Langmuir 2005, 21, 6788–6796.

    Article  CAS  Google Scholar 

  33. Yao, C. B.; Dahmen, T.; Gansäuer, A.; Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 2019, 364, 764–767.

    Article  CAS  Google Scholar 

  34. Liu, W. P.; Li, W.; Spannenberg, A.; Junge, K.; Beller, M. Iron-catalysed regioselective hydrogenation of terminal epoxides to alcohols under mild conditions. Nat. Catal. 2019, 2, 523–528.

    Article  CAS  Google Scholar 

  35. Zhou, Y. X.; Chen, Y. Z.; Hu, Y. L.; Huang, G.; Yu, S. H.; Jiang, H. L. MIL-101-SO3H: A highly efficient Bronsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Chem. -Eur. J. 2014, 20, 14976–14980.

    Article  CAS  Google Scholar 

  36. Telkar, M. M.; Rode, C. V.; Chaudhari, R. V.; Joshi, S. S.; Nalawade, A. M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide. Appl. Catal. A:Gen. 2004, 273, 11–19.

    Article  CAS  Google Scholar 

  37. Bruno, S. M.; Gonçalves, I. S.; Pillinger, M.; Romão, C. C.; Valente, A. A. Acid-catalyzed epoxide alcoholysis in the presence of indenyl molybdenum carbonyl complexes. J. Organomet. Chem. 2018, 855, 12–17.

    Article  CAS  Google Scholar 

  38. Li, L. G.; Bu, L. Z.; Huang, B. L.; Wang, P. T.; Shen, C. Q.; Bai, S. X.; Chan, T. S.; Shao, Q.; Hu, Z. W.; Huang, X. Q. Compensating electronic effect enables fast site-to-site electron transfer over ultrathin RuMn nanosheet branches toward highly electroactive and stable water splitting. Adv. Mater. 2021, 33, 2105308.

    Article  CAS  Google Scholar 

  39. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

    Article  CAS  Google Scholar 

  40. Mao, Q. Q.; Wang, P.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, L.; Wang, H. J. PdRh bimetallene for energy-saving hydrogen production via methanol electroreforming. Appl. Mater. Today 2022, 26, 101400.

    Article  Google Scholar 

  41. Łosiewicz, B.; Lasia, A. Study of the hydrogen absorption/diffusion in Pd80Rh20 alloy in acidic solution. J. Electroanal. Chem. 2018, 822, 153–162.

    Article  Google Scholar 

Download references

Acknowledgements

H. Z. thanks the support from ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), the Research Grants Council of Hong Kong (No. 11301721), the Start-Up Grant (No. 9380100) and the grants (No. 1886921) from the City University of Hong Kong. This research used 7-BM of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract (No. DE-SC0012704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Electronic Supplementary Material

12274_2022_5101_MOESM1_ESM.pdf

Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Ge, J., Huang, B. et al. Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution. Nano Res. 16, 4650–4655 (2023). https://doi.org/10.1007/s12274-022-5101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5101-0

Keywords

Navigation