Skip to main content
Log in

Oriented magnetic liquid metal-filled interlocked bilayer films as multifunctional smart electromagnetic devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Smart electromagnetic functional devices prepared based on electromagnetic wave responsive materials will provide more convenience for human life in the future. Here, we prepare oriented magnetic liquid metal droplet-filled polydimethylsiloxane films with micropillar array patterned surfaces, and further assemble them into bilayer films with interlocked structures. Once compressed, the increase in conductivity of the film due to the tunneling effect between microarrays and the elongation of liquid metal droplets leads to a rapid increase in electromagnetic interference shielding performance. Accordingly, a tunable electromagnetic interference shielding material with high sensitivity and wide control range is obtained, which has potential applications in electromagnetic wave control systems and intelligent electromagnetic protection systems. Meanwhile, we assemble a strain sensor and a magnetic sensor, which can precisely sense pressure and magnetic field according to changes in electromagnetic signal and electrical signal, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nanomicroarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

    Article  CAS  Google Scholar 

  2. Zhao, Z. H.; Lan, D.; Zhang, L. M.; Wu, H. J. A flexible, mechanically strong, and anti-corrosion electromagnetic wave absorption composite film with periodic electroconductive patterns. Adv. Funct. Mater. 2022, 32, 2111045.

    Article  CAS  Google Scholar 

  3. Hao, H. L.; Hui, D.; Lau, D. Material advancement in technological development for the 5G wireless communications. Nanotechnol. Rev. 2020, 9, 683–699.

    Article  Google Scholar 

  4. Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

    Article  Google Scholar 

  5. Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

    Article  Google Scholar 

  6. Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

    Article  CAS  Google Scholar 

  7. Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

    Article  CAS  Google Scholar 

  8. Wu, F.; Sun, M. X.; Chen, C. C.; Zhou, T.; Xia, Y. L.; Xie, A. M.; Shang, Y. F. Controllable coating of polypyrrole on silicon carbide nanowires as a core-shell nanostructure: A facile method to enhance attenuation characteristics against electromagnetic radiation. ACS Sustainable Chem. Eng. 2019, 7, 2100–2106.

    Article  CAS  Google Scholar 

  9. Li, Q. H.; Li, Z.; Zhang, Q. H.; Zheng, L. R.; Yan, W. S.; Liang, X.; Gu, L.; Chen, C.; Wang, D. S.; Peng, Q. et al. Porous γ-Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Res. 2021, 14, 1435–1442.

    Article  CAS  Google Scholar 

  10. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Article  Google Scholar 

  11. Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

    Article  CAS  Google Scholar 

  12. Song, Z. M.; Liu, X. F.; Sun, X.; Li, Y.; Nie, X. Y.; Tang, W. K.; Yu, R. H.; Shui, J. L. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance. Carbon 2019, 151, 36–45.

    Article  CAS  Google Scholar 

  13. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  Google Scholar 

  14. Shi, Y. P.; Li, D.; Si, H. X.; Jiang, Z. Y.; Li, M. Y.; Gong, C. H. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255.

    Article  Google Scholar 

  15. Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

    Article  CAS  Google Scholar 

  16. Song, Z. M.; Sun, X.; Li, Y.; Tang, W. K.; Liu, G. L.; Shui, J. L.; Liu, X. F.; Yu, R. H. Carbon fibers embedded with aligned magnetic particles for efficient electromagnetic energy absorption and conversion. ACS Appl. Mater. Interfaces 2021, 13, 5266–5274.

    Article  CAS  Google Scholar 

  17. Shi, Y. P.; Li, D.; Si, H. X.; Duan, Y. P.; Gong, C. H.; Zhang, J. W. TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption. J. Alloys Compd. 2022, 918, 165603.

    Article  CAS  Google Scholar 

  18. Jia, Z. R.; Kong, M. Y.; Yu, B. W.; Ma, Y. Z.; Pan, J. Y.; Wu, G. L. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 2022, 127, 153–163.

    Article  Google Scholar 

  19. Wang, C.; Murugadoss, V.; Kong, J.; He, Z. F.; Mai, X. M.; Shao, Q.; Chen, Y. J.; Guo, L.; Liu, C. T.; Angaiah, S. et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733.

    Article  CAS  Google Scholar 

  20. Zhang, X.; Tian, X. L.; Liu, C.; Qiao, J.; Liu, W.; Liu, J. R.; Zeng, Z. H. MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 2022, 194, 257–266.

    Article  CAS  Google Scholar 

  21. Liu, Y.; Zeng, Z. H.; Zheng, S. N.; Qiao, J.; Liu, W.; Wu, L. L.; Liu, J. R. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Compos. Part B:Eng. 2022, 235, 109800.

    Article  CAS  Google Scholar 

  22. Song, Y. H.; Liu, X. H.; Gao, Z. G.; Wang, Z. D.; Hu, Y. H.; Yang, K.; Zhao, Z. H.; Lan, D.; Wu, G. L. Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 620, 263–272.

    Article  CAS  Google Scholar 

  23. Balci, O.; Polat, E. O.; Kakenov, N.; Kocabas, C. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 2015, 6, 6628.

    Article  CAS  Google Scholar 

  24. Zhang, Q.; Liang, Q. J.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Ding, Y.; Ma, M. Y.; Gao, F. F.; Zhao, X.; Zhang, Y. Electromagnetic shielding hybrid nanogenerator for health monitoring and protection. Adv. Funct. Mater. 2018, 28, 1703801.

    Article  Google Scholar 

  25. Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

    Article  CAS  Google Scholar 

  26. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    CAS  Google Scholar 

  27. Wang, D. C.; Yu, H. Y.; Jiang, L. R.; Qi, D. M.; Zhang, X. X.; Chen, L. M.; Lv, W. T.; Xu, W. Q.; Tam, K. C. Flexible, anti-damage, and non-contact sensing electronic skin implanted with MWCNT to block public pathogens contact infection. Nano Res. 2022, 15, 2616–2625.

    Article  CAS  Google Scholar 

  28. Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

    Article  CAS  Google Scholar 

  29. Li, D. Y.; Liu, L. X.; Wang, Q. W.; Zhang, H. B.; Chen, W.; Yin, G.; Yu, Z. Z. Functional polyaniline/MXene/cotton fabrics with acid/alkali-responsive and tunable electromagnetic interference shielding performances. ACS Appl. Mater. Interfaces 2022, 14, 12703–12712.

    Article  CAS  Google Scholar 

  30. Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

    Article  CAS  Google Scholar 

  31. Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

    Article  CAS  Google Scholar 

  32. Zhang, W. Y.; Zhang, X. P.; Wu, Z. F.; Abdurahman, K.; Cao, Y. L.; Duan, H. M.; Jia, D. Z. Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Compos. Sci. Technol. 2020, 188, 107966.

    Article  CAS  Google Scholar 

  33. Yang, M.; Yang, Z. J.; Lv, C.; Wang, Z.; Lu, Z.; Lu, G. Y.; Jia, X. T.; Wang, C. Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing. Compos. Sci. Technol. 2022, 221, 109313.

    Article  CAS  Google Scholar 

  34. Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789–1795.

    Article  CAS  Google Scholar 

  35. Sang, M.; Zhang, J. S.; Liu, S.; Zhou, J. Y.; Wang, Y.; Deng, H. X.; Li, J.; Li, J.; Xuan, S. H.; Gong, X. L. Advanced MXene/shear stiffening composite-based sensor with high-performance electromagnetic interference shielding and anti-impacting Bi-protection properties for smart wearable device. Chem. Eng. J. 2022, 440, 135869.

    Article  CAS  Google Scholar 

  36. Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

    Article  CAS  Google Scholar 

  37. Hu, L. Z.; Wu, H. Z.; Zhang, Q. S.; You, H. R.; Jiao, J.; Luo, H. S.; Wang, Y. J.; Gao, A. R.; Duan, C. G. Self-powered energy-harvesting magnetic field sensor. Appl. Phys. Lett. 2022, 120, 043902.

    Article  CAS  Google Scholar 

  38. Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

    Article  Google Scholar 

  39. Lv, H. L.; Yang, Z. H.; Ong, S. J. H.; Wei, C.; Liao, H. B.; Xi, S. B.; Du, Y. H.; Ji, G. B.; Xu, Z. J. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 2019, 29, 1900163.

    Article  Google Scholar 

  40. Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

    Article  CAS  Google Scholar 

  41. Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202204499.

  42. Zeng, Z. H.; Qiao, J.; Zhang, R. N.; Liu, J. R.; Nyström, G. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, in press, https://doi.org/10.1002/smm2.1118.

  43. Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

    Article  CAS  Google Scholar 

  44. Ren, L.; Sun, S. S.; Casillas-Garcia, G.; Nancarrow, M.; Peleckis, G.; Turdy, M.; Du, K. R.; Xu, X.; Li, W. H.; Jiang, L. et al. A liquid-metal-based magnetoactive slurry for stimuli-responsive mechanically adaptive electrodes. Adv. Mater. 2018, 30, 1802595.

    Article  Google Scholar 

  45. Yun, G. L.; Tang, S. Y.; Sun, S. S.; Yuan, D.; Zhao, Q. B.; Deng, L.; Yan, S.; Du, H. P.; Dickey, M. D.; Li, W. H. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nat. Commun. 2019, 10, 1300.

    Article  Google Scholar 

  46. Hu, L.; Wang, H. Z.; Wang, X. F.; Liu, X.; Guo, J. R.; Liu, J. Magnetic liquid metals manipulated in the three-dimensional free space. ACS Appl. Mater. Interfaces 2019, 11, 8685–8692.

    Article  CAS  Google Scholar 

  47. Lee, Y.; Park, J.; Cho, S.; Shin, Y. E.; Lee, H.; Kim, J.; Myoung, J.; Cho, S.; Kang, S.; Baig, C. et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018, 12, 4045–4054.

    Article  CAS  Google Scholar 

  48. Zeng, Z. H.; Jiang, F. Z.; Yue, Y.; Han, D. X.; Lin, L. C.; Zhao, S. Y.; Zhao, Y. B.; Pan, Z. Y.; Li, C. J.; Nyström, G. et al. Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 2020, 32, 1908496.

    Article  CAS  Google Scholar 

  49. Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 1902549.

    Article  CAS  Google Scholar 

  50. Yao, B.; Hong, W.; Chen, T. W.; Han, Z. B.; Xu, X. W.; Hu, R. C.; Hao, J. Y.; Li, C. H.; Li, H.; Perini, S. E. et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, 1907499.

    Article  CAS  Google Scholar 

  51. Wang, G. Q.; Yi, D.; Jia, X. C.; Chen, J. L.; Shen, B.; Zheng, W. G. Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Mater. Today Phys. 2022, 22, 100612.

    Article  Google Scholar 

  52. Yao, B.; Xu, X. W.; Li, H.; Han, Z. B.; Hao, J. Y.; Yang, G.; Xie, Z. X.; Chen, Y. T.; Liu, W. S.; Wang, Q. et al. Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128288.

    Article  CAS  Google Scholar 

  53. Zhu, S.; Zhou, Q. Y.; Wang, M. Y.; Dale, J.; Qiang, Z.; Fan, Y. C.; Zhu, M. F.; Ye, C. H. Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function. Compos. Part B:Eng. 2021, 204, 108497.

    Article  CAS  Google Scholar 

  54. Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chem. Eng. J. 2021, 405, 126927.

    Article  CAS  Google Scholar 

  55. Shen, B.; Li, Y.; Zhai, W. T.; Zheng, W. G. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057.

    Article  CAS  Google Scholar 

  56. Bera, R.; Maitra, A.; Paria, S.; Karan, S. K.; Das, A. K.; Bera, A.; Si, S. K.; Halder, L.; De, A.; Khatua, B. B. An approach to widen the electromagnetic shielding efficiency in PDMS/ferrous ferric oxide decorated RGO-SWCNH composite through pressure induced tunability. Chem. Eng. J. 2018, 335, 501–509.

    Article  CAS  Google Scholar 

  57. Jia, X. C.; Shen, B.; Zhang, L. H.; Zheng, W. G. Construction of compressible polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon 2021, 173, 932–940.

    Article  CAS  Google Scholar 

  58. Hou, C.; Tai, G. A.; Liu, B.; Wu, Z. H.; Yin, Y. H. Borophenegraphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344.

    Article  CAS  Google Scholar 

  59. Gao, L. B.; Cao, K.; Hu, X. K.; Xiao, R.; Gan, B.; Wang, W. D.; Lu, Y. Nano electromechanical approach for flexible piezoresistive sensor. Appl. Mater. Today 2020, 18, 100475.

    Article  Google Scholar 

  60. Kim, H.; Kim, G.; Kim, T.; Lee, S.; Kang, D.; Hwang, M. S.; Chae, Y.; Kang, S.; Lee, H.; Park, H. G. et al. Transparent, flexible, conformal capacitive pressure sensors with nanoparticles. Small 2018, 14, 1703432.

    Article  Google Scholar 

  61. Hao, L.; Chen, Y. F.; Gao, Z. Q.; Wen, Z.; Sun, X. H. Advances in self-powered triboelectric pressure sensors. J. Mater. Chem. A 2021, 9, 20100–20130.

    Article  Google Scholar 

  62. Ripka, P.; Janosek, M. Advances in magnetic field sensors. IEEE Sens. J. 2010, 10, 1108–1116.

    Article  Google Scholar 

  63. Yang, Y.; Lin, L.; Zhang, Y.; Jing, Q. S.; Hou, T. C.; Wang, Z. L. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 2012, 6, 10378–10383.

    Article  CAS  Google Scholar 

  64. Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

    Article  Google Scholar 

  65. Duan, Z. H.; Jiang, Y. D.; Tai, H. L. Recent advances in humidity sensors for human body related humidity detection. J. Mater. Chem. C 2021, 9, 14963–14980.

    Article  CAS  Google Scholar 

  66. Jeong, W.; Song, J.; Bae, J.; Nandanapalli, K. R.; Lee, S. Breathable nanomesh humidity sensor for real-time skin humidity monitoring. ACS Appl. Mater. Interfaces 2019, 11, 44758–44763.

    Article  CAS  Google Scholar 

  67. Bhardwaj, R.; Hazra, A. MXene-based gas sensors. J. Mater. Chem. C 2021, 9, 15735–15754.

    Article  CAS  Google Scholar 

  68. Wang, T.; Guo, Y. L.; Wan, P. B.; Zhang, H.; Chen, X. D.; Sun, X. M. Flexible transparent electronic gas sensors. Small 2016, 12, 3748–3756.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51971008, U1832138, 51731002, and 51671010), Natural Science Foundation of Beijing Municipality (No. 2212033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Yi or Xiaofang Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Y., Li, X. et al. Oriented magnetic liquid metal-filled interlocked bilayer films as multifunctional smart electromagnetic devices. Nano Res. 16, 1764–1772 (2023). https://doi.org/10.1007/s12274-022-4843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4843-z

Keywords

Navigation