Skip to main content
Log in

Self-organization and tunable characteristic lengths of two-dimensional hexagonal superlattices of nanowires directly grown on substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The organization of nano-objects on macroscopic surfaces is a key challenge for the technological improvement and implementation of nanotechnologies. For achieving operational functions, it is required to assemble nano-objects as controllable building blocks in highly ordered superstructures. Herein, we demonstrate the growth and self-organization of metallic nanowires on surfaces into hexagonal superlattices with tunable characteristic lengths depending of the stabilizing surfactants employed. Starting from a reacting mixture containing a Pt(111) substrate, a Co organometallic precursor, an amine, and an acid dissolved in a solvent, we quantify the structural evolution of superlattices of vertical single-crystalline Co nanowires on Pt, using a combined analysis of small angle neutron scattering, transmission, and scanning electron microscopies. We show the concerted steps of a spontaneous growth and self-organization of the nanowires into two-dimensional (2D) hexagonal lattice on Pt, at intervals starting from a few hours of reaction to a highly ordered superlattice at longer times. Furthermore, it is shown that apart from long-chain acid and long-chain aliphatic amine pairs used as stabilizers, the combination of a long-chain aliphatic and a short-chain aromatic ligand in the synthesis can also be employed for the nanowire superlattices development. Interestingly, the possibility to employ different pairs allows quantitative modulation of the nanowire arrays, such as the interwire distance and the packing fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

    Article  CAS  Google Scholar 

  2. Li, X. Y.; Liu, X. W.; Liu, X. G. Self-assembly of colloidal inorganic nanocrystals: Nanoscale forces, emergent properties and applications. Chem. Soc. Rev. 2021, 50, 2074–2101.

    Article  CAS  Google Scholar 

  3. Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270.

    Article  CAS  Google Scholar 

  4. Dugay, J.; Tan, R. P.; Loubat, A.; Lacroix, L. M.; Carrey, J.; Fazzini, P. F.; Blon, T.; Mayoral, A.; Chaudret, B.; Respaud, M. Tuning deposition of magnetic metallic nanoparticles from periodic pattern to thin film entrainment by dip coating method. Langmuir 2014, 30, 9028–9035.

    Article  CAS  Google Scholar 

  5. Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

    Article  CAS  Google Scholar 

  6. Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  CAS  Google Scholar 

  7. Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.; Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 2012, 6, 2118–2127.

    Article  CAS  Google Scholar 

  8. Kinge, S.; Crego-Calama, M.; Reinhoudt, D. N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 2008, 9, 20–42.

    Article  CAS  Google Scholar 

  9. Fan, H. J.; Werner, P.; Zacharias M. Semiconductor nanowires: From self-organization to patterned growth. Small 2006, 2, 700–717.

    Article  CAS  Google Scholar 

  10. Wacaser, B. A.; Dick, K. A.; Johansson, J.; Borgström, M. T.; Deppert, K.; Samuelson, L. Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv. Mater. 2009, 21, 153–165.

    Article  CAS  Google Scholar 

  11. Yeo, J.; Hong, S.; Kim, G.; Lee, H.; Suh, Y. D.; Park, I.; Grigoropoulos, C. P.; Ko, S. H. Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 2015, 9, 6059–6068.

    Article  CAS  Google Scholar 

  12. Xu, S.; Lao, C. S.; Weintraub, B.; Wang, Z. L. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 2008, 23, 2072–2077.

    Article  CAS  Google Scholar 

  13. Srivastava, S.; Kotov, N. A. Nanoparticleassembly for 1D and 2D ordered structures. Soft Matter 2009, 5, 1146–1156.

    Article  CAS  Google Scholar 

  14. Wetz, F.; Soulantica, K.; Respaud, M.; Falqui, A.; Chaudret, B. Synthesis and magnetic properties of Co nanorod superlattices. Mater. Sci. Eng. C 2007, 27, 1162–1166.

    Article  CAS  Google Scholar 

  15. Liakakos, N.; Cormary, B.; Li, X. J.; Lecante, P.; Respaud, M.; Maron, L.; Falqui, A.; Genovese, A.; Vendier, L.; Koïnis, S. et al. The big impact of a small detail:Cobalt nanocrystal polymorphism as a result of precursor addition rate during stock solution preparation. J. Am. Chem. Soc. 2012, 134, 17922–17931.

    Article  CAS  Google Scholar 

  16. Liakakos, N.; Blon, T.; Achkar, C.; Vilar, V.; Cormary, B.; Tan, R. P.; Benamara, O.; Chaboussant, G.; Ott, F.; Warot-Fonrose, B. et al. Solution epitaxial growth of cobalt nanowires on crystalline substrates for data storage densities beyond 1 Tbit/in2. Nano Lett. 2014, 14, 3481–3486.

    Article  CAS  Google Scholar 

  17. Harmel, J.; Peres, L.; Estrader, M.; Berliet, A.; Maury, S.; Fécant, A.; Chaudret, B.; Serp, P.; Soulantica, K. hcp-Co nanowires grown on metallic foams as catalysts for Fischer-Tropsch synthesis. Angew. Chem., Int. Ed. 2018, 57, 10579–10583.

    Article  CAS  Google Scholar 

  18. Lacroix, L. M.; Lachaize, S.; Falqui, A.; Respaud, M.; Chaudret, B. Iron nanoparticle growth in organic superstructures. J. Am. Chem. Soc. 2009, 131, 549–557.

    Article  CAS  Google Scholar 

  19. Peres, L.; Yi, D. L.; Bustos-Rodriguez, S.; Marcelot, C.; Pierrot, A.; Fazzini, P. F.; Florea, I.; Arenal, R.; Lacroix, L. M.; Warot-Fonrose, B. et al. Shape selection through epitaxy of supported platinum nanocrystals. Nanoscale 2018, 10, 22730–22736.

    Article  CAS  Google Scholar 

  20. Liakakos, N.; Achkar, C.; Cormary, B.; Harmel, J.; Warot-Fonrose, B.; Snoeck, E.; Chaudret, B.; Respaud, M.; Soulantica, K.; Blon, T. Oriented metallic nano-objects on crystalline surfaces by solution epitaxial growth. ACS Nano 2015, 9, 9665–9677.

    Article  CAS  Google Scholar 

  21. Albrecht, T. R.; Arora, H.; Ayanoor-Vitikkate, V.; Beaujour, J. M.; Bedau, D.; Berman, D.; Bogdanov, A. L.; Chapuis, Y. A.; Cushen, J.; Dobisz, E. E. et al. Bit-patterned magnetic recording: Theory, media fabrication, and recording performance. IEEE Trans. Magn. 2015, 51, 0800342.

    Article  Google Scholar 

  22. Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

    Article  CAS  Google Scholar 

  23. Li, T.; Senesi, A. J.; Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016, 116, 11128–11180.

    Article  CAS  Google Scholar 

  24. Cormary, B.; Li, T.; Liakakos, N.; Peres, L.; Fazzini, P. F.; Blon, T.; Respaud, M.; Kropf, A. J.; Chaudret, B.; Miller, J. T. et al. Concerted growth and ordering of cobalt nanorod arrays as revealed by tandem in situ SAXS-XAS studies. J. Am. Chem. Soc. 2016, 138, 8422–8431.

    Article  CAS  Google Scholar 

  25. Dumestre, F.; Chaudret, B.; Amiens, C.; Respaud, M.; Fejes, P.; Renaud, P.; Zurcher, P. Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. Angew. Chem., Int. Ed. 2003, 42, 5213–5216.

    Article  CAS  Google Scholar 

  26. Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T. G.; Vezmar, I.; Alvarez, M. M.; Wilkinson, A. Crystal structures of molecular gold nanocrystal arrays. Acc. Chem. Res. 1999, 32, 397–406.

    Article  CAS  Google Scholar 

  27. Boles, M. A.; Talapin, D. V. Many-body effects in nanocrystal superlattices: Departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 2015, 137, 4494–4502.

    Article  CAS  Google Scholar 

  28. Quan, Z. W.; Xu, H. W.; Wang, C. Y.; Wen, X. D.; Wang, Y. X.; Zhu, J. L.; Li, R. P.; Sheehan, C. J.; Wang, Z. W.; Smilgies, D. M. et al. Solvent-mediated self-assembly of nanocube superlattices. J. Am. Chem. Soc. 2014, 136, 1352–1359.

    Article  CAS  Google Scholar 

  29. Kaźḿierczak, K.; Yi, D. L.; Jaud, A.; Fazzini, P. F.; Estrader, M.; Viau, G.; Decorse, P.; Piquemal, J. Y.; Michel, C.; Besson, M. et al. Influence of capping ligands on the catalytic performances of cobalt nanoparticles prepared with the organometallic route. J. Phys. Chem. C 2021, 125, 7711–7720.

    Article  Google Scholar 

  30. Feng, X.; Sosa-Vargas, L.; Umadevi, S.; Mori, T.; Shimizu, Y.; Hegmann, T. Discotic liquid crystal-functionalized gold nanorods: 2- and 3D self-assembly and macroscopic alignment as well as increased charge carrier mobility in hexagonal columnar liquid crystal hosts affected by molecular packing and π—π interactions. Adv. Funct. Mater. 2015, 25, 1180–1192.

    Article  CAS  Google Scholar 

  31. Lin N.; Stepanow S.; Ruben M.; Barth J. V. Surface-confined supramolecular coordination chemistry. In: Templates in Chemistry III. Broekmann, P.; Dötz, K. H.; Schalley, C. A., Eds.; Springer: Berlin, 2008; pp 1–44.

    Google Scholar 

  32. Lippel, P. H.; Wilson, R. J.; Miller, M. D.; Wöll, C.; Chiang, S. Highresolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 1989, 62, 171–174.

    Article  CAS  Google Scholar 

  33. Kröger, J.; Jensen, H.; Néel, N.; Berndt, R. Self-organization of cobalt-phthalocyanine on a vicinal gold surface revealed by scanning tunnelling microscopy. Surf. Sci. 2007, 601, 4180–4184.

    Article  Google Scholar 

  34. Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (France) under contract No. ANR-14-CE07-0025-01 (DENSAR). The authors thank A. Gillet and A. Pham for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Blon.

Electronic supplementary material

12274_2022_4804_MOESM1_ESM.pdf

Self-organization and tunable characteristic lengths of two-dimensional hexagonal superlattices of nanowires directly grown on substrates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, D., Peres, L., Pierrot, A. et al. Self-organization and tunable characteristic lengths of two-dimensional hexagonal superlattices of nanowires directly grown on substrates. Nano Res. 16, 1606–1613 (2023). https://doi.org/10.1007/s12274-022-4804-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4804-6

Keywords

Navigation