Skip to main content
Log in

Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonic nanomaterial catalysis is currently at the frontier of photocatalysis, overcoming the limitations of wide bandgap semiconductors for light absorption. Its localized surface plasmon resonance (LSPR) properties allow broad ultraviolet—visible—near infrared ray (UV—vis—NIR) absorption, making it an ideal material for solar energy conversion. Most plasmonic nanostructures rely on precious metals. Although noble metal plasmonic nanomaterials have proven to be one of the strategies for enhancing photocatalytic activity, their expensive cost and limitations in light absorption range have hindered their practical application. As a result, noble-metal free plasmonic nanomaterials have risen to the top of the research priority list. Therefore, this paper reviews the fundamental principles and classification of the LSPR effect of noble-metal free plasmonic nanomaterials in photocatalytic and their recent applications in hydrogen generation, carbon dioxide reduction, and pollutant degradation. Specific cases elucidate the possible working mechanism of enhanced photocatalysis by noble-metal free plasmonic nanomaterials. Finally, the challenges and future opportunities for noble-metal free plasmonic nanomaterials in energy conversion and storage are discussed and envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, X. Y.; Zhu, S. D.; Xia, M. Z.; Du, P.; Wang, F. Y. Investigation of the efficient adsorption performance and adsorption mechanism of 3D composite structure La nanosphere-coated Mn/Fe layered double hydrotalcite on phosphate. J. Colloid Interface Sci. 2022, 614, 478–488.

    Article  CAS  Google Scholar 

  2. Song, H.; Meng, X. G.; Wang, Z. J.; Liu, H. M.; Ye, J. H. Solar-energy-mediated methane conversion. Joule 2019, 3, 1606–1636.

    Article  CAS  Google Scholar 

  3. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  Google Scholar 

  4. Zhao, Y. F.; Gao, W.; Li, S. W.; Williams, G. R.; Mahadi, A. H.; Ma, D. Solar- versus thermal-driven catalysis for energy conversion. Joule 2019, 3, 920–937.

    Article  CAS  Google Scholar 

  5. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  Google Scholar 

  6. Yuan, C.; Cheng, P. F; Li, J.; Gao, X. L.; Gao, X. S.; Wang, X.; Jin, M. L.; Nötzel, R.; Zhou, G. F.; Zhang, Z. et al. ZIF-67 with argon annealing treatment for visible light responsive degradation of organic dyes in a wide pH range. Microporous Mesoporous Mater 2019, 285, 13–20.

    Article  CAS  Google Scholar 

  7. Li, J. H.; Luo, B.; Zheng, X. W.; Jing, D. W.; Ma, L. J. The in situ photodeposition fabrication of a NixCoy/g-C3N4 photocatalyst for efficient catalytic hydrogen generation. Catal. Sci. Technol. 2021, 11, 7624–7631.

    Article  CAS  Google Scholar 

  8. Wy, Y.; Jung, H.; Hong, J. W.; Han, S. W. Exploiting plasmonic hot spots in Au-based nanostructures for sensing and photocatalysis. Acc. Chem. Res. 2022, 55, 831–843.

    Article  CAS  Google Scholar 

  9. An, H. D.; Li, M. M.; Gao, J.; Zhang, Z. J.; Ma, S. Q.; Chen, Y. Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev. 2019, 384, 90–106.

    Article  CAS  Google Scholar 

  10. Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

    Article  CAS  Google Scholar 

  11. Yin, X.; Feng, L. G.; Yang, W.; Zhang, Y. X.; Wu, H. Y.; Yang, L.; Zhou, L.; Gan, L.; Sun, S. R. Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application. Nano Res. 2022, 15, 2138–2146.

    Article  CAS  Google Scholar 

  12. Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

    Article  CAS  Google Scholar 

  13. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  14. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Article  Google Scholar 

  15. Wang, M. Y.; Iocozzia, J.; Sun, L.; Lin, C. J.; Lin, Z. Q. Correction: Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energy Environ. Sci. 2017, 10, 2041.

    Article  CAS  Google Scholar 

  16. Li, X.; Shi, J. L.; Hao, H. M.; Lang, X. J. Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl. Catal. B: Environ. 2018, 232, 260–267.

    Article  CAS  Google Scholar 

  17. Di Mauro, A.; Cantarella, M.; Nicotra, G.; Privitera, V.; Impellizzeri, G. Low temperature atomic layer deposition of ZnO: Applications in photocatalysis. Appl. Catal. B: Environ. 2016, 196, 68–76.

    Article  CAS  Google Scholar 

  18. Noman, M. T.; Petru, M.; Militký, J.; Azeem, M.; Ashraf, M. A. One-pot sonochemical synthesis of ZnO nanoparticles for photocatalytic applications, modelling and optimization. Materials 2019, 13, 14.

    Article  Google Scholar 

  19. Wang, L. F.; Liu, S. H.; Wang, Z.; Zhou, Y. L.; Qin, Y.; Wang, Z. L. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 2016, 10, 2636–2643.

    Article  CAS  Google Scholar 

  20. Yu, K. F.; Jiang, P. Y.; Yuan, H. B.; He, R.; Zhu, W. K.; Wang, L. B. Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability. Appl. Catal. B: Environ. 2021, 288, 119978.

    Article  CAS  Google Scholar 

  21. Liu, Z. C.; Liu, Z. F.; Cui, T.; Li, J. W.; Zhang, J.; Chen, T.; Wang, X. C.; Liang, X. P. Photocatalysis of two-dimensional honeycomblike ZnO nanowalls on zeolite. Chem. Eng. J. 2014, 235, 257–263.

    Article  CAS  Google Scholar 

  22. Xu, H. Q.; Yang, S. Z.; Ma, X.; Huang, J. E.; Jiang, H. L. Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615–11621.

    Article  CAS  Google Scholar 

  23. Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CdS/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B: Environ. 2019, 242, 178–185.

    Article  CAS  Google Scholar 

  24. Zhu, N. Y.; Tang, J.; Tang, C. L.; Duan, P. F.; Yao, L. G.; Wu, Y. H.; Dionysiou, D. D. Combined CdS nanoparticles-assisted photocatalysis and periphytic biological processes for nitrate removal. Chem. Eng. J. 2018, 353, 237–245.

    Article  CAS  Google Scholar 

  25. Zhang, M. Y.; Hu, Q. Y.; Ma, K. W.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.

    Article  CAS  Google Scholar 

  26. Wang, Y. R.; Zhao, J. J.; Hou, W. Q.; Xu, Y. M. Decoration of CdS nanowires with Ni3S4 nanoballs enhancing H2 and H2O2 production under visible light. Appl. Catal. B: Environ. 2022, 310, 121350.

    Article  CAS  Google Scholar 

  27. Dörr, T. S.; Deilmann, L.; Haselmann, G.; Cherevan, A.; Zhang, P.; Blaha, P.; De Oliveira, P. W.; Kraus, T.; Eder, D. Ordered mesoporous TiO2 gyroids: Effects of pore architecture and Nb-doping on photocatalytic hydrogen evolution under UV and visible irradiation. Adv. Energy Mater. 2018, 8, 1802566.

    Article  Google Scholar 

  28. Lim, J.; Monllor-Satoca, D.; Jang, J. S.; Lee, S.; Choi, W. Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping. Appl. Catal. B: Environ. 2014, 152-153, 233–240.

    Article  Google Scholar 

  29. Li, J. L.; Xu, X. T.; Liu, X. J.; Yu, C. Y.; Yan, D.; Sun, Z.; Pan, L. K. Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J. Alloys Compd. 2016, 679, 454–462.

    Article  CAS  Google Scholar 

  30. Iwaszuk, A.; Nolan, M. SnO-nanocluster modified anatase TiO2 photocatalyst: Exploiting the Sn(II) lone pair for a new photocatalyst material with visible light absorption and charge carrier separation. J. Mater. Chem. A 2013, 1, 6670–6677.

    Article  CAS  Google Scholar 

  31. Niu, P. P.; Wu, G. H.; Chen, P. H.; Zheng, H. T.; Cao, Q.; Jiang, H. L. Optimization of boron doped TiO2 as an efficient visible light-driven photocatalyst for organic dye degradation with high reusability. Front. Chem. 2020, 8, 172.

    Article  CAS  Google Scholar 

  32. Xu, F. C.; Wu, F. F.; Zhu, K. L.; Fang, Z. P.; Jia, D. M.; Wang, Y. K.; Jia, G.; Low, J.; Ye, W.; Sun, Z. T. et al. Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation. Appl. Catal. B: Environ. 2021, 284, 119689.

    Article  CAS  Google Scholar 

  33. Wang, F.; He, X. X.; Sun, L. M.; Chen, J. Q.; Wang, X. J.; Xu, J. H.; Han, X. G. Engineering an N-doped TiO2@N-doped C butterflylike nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidation. J. Mater. Chem. A 2018, 6, 2091–2099.

    Article  CAS  Google Scholar 

  34. Zheng, P.; Zhou, W.; Wang, Y. P.; Ren, D. Z.; Zhao, J.; Guo, S. W. N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis. Appl. Surf. Sci. 2020, 512, 144549.

    Article  CAS  Google Scholar 

  35. Mohamed, R. M.; Aazam, E. Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chin. J. Catal. 2013, 34, 1267–1273.

    Article  CAS  Google Scholar 

  36. Mendiola-Alvarez, S. Y.; Palomino-Cabello, C.; Hernández-Ramírez, A.; Turnes-Palomino, G.; Guzmán-Mar, J. L.; Hinojosa-Reyes, L. Coupled heterogeneous photocatalysis using a P-TiO2-αFe2O3 catalyst and K2S2O8 for the efficient degradation of a sulfonamide mixture. J. Photochem. Photobiol. A: Chem. 2020, 394, 112485.

    Article  CAS  Google Scholar 

  37. Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. G. CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 2015, 5, 1500010.

    Article  Google Scholar 

  38. Tang, S. L.; Sun, J.; Hong, H.; Liu, Q. B. Solar fuel from photothermal catalytic reactions with spectrum-selectivity: A review. Front. Energy 2017, 11, 437–451.

    Article  Google Scholar 

  39. Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.

    Article  CAS  Google Scholar 

  40. Ye, W.; Long, R.; Huang, H.; Xiong, Y. J. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 2017, 5, 1008–1021.

    Article  CAS  Google Scholar 

  41. Wang, H. L.; Liu, X. L.; Luo, Q. Y.; Yao, H. C.; Xu, Q.; Tian, Y.; Wang, J. G.; Xuan, Y. M. Artificial “honeycomb-honey” decorated with non-noble plasmonic nanoparticles for superior solar capture and thermal energy storage. Nano Res. 2022, 15, 8065–8075.

    Article  CAS  Google Scholar 

  42. Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207.

    Article  CAS  Google Scholar 

  43. Tada, H.; Suzuki, F.; Ito, S.; Akita, T.; Tanaka, K.; Kawahara, T.; Kobayashi, H. Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organosulfur compound. J. Phys. Chem. B 2002, 106, 8714–8720.

    Article  CAS  Google Scholar 

  44. Yan, H. J.; Yang, J. H.; Ma, G. J.; Wu, G. P.; Zong, X.; Lei, Z. B.; Shi, J. Y.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-Pds/CdS photocatalyst. J. Catal. 2009, 266, 165–168.

    Article  CAS  Google Scholar 

  45. Dias, M. R. S.; Leite, M. S. Alloying: A platform for metallic materials with on-demand optical response. Acc. Chem. Res. 2019, 52, 2881–2891.

    Article  Google Scholar 

  46. Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.

    Article  CAS  Google Scholar 

  47. Biggins, J. S.; Yazdi, S.; Ringe, E. Magnesium nanoparticle plasmonics. Nano Lett. 2018, 18, 3752–3758.

    Article  CAS  Google Scholar 

  48. Zhang, X. M.; Chen, Y. L.; Liu, R. S.; Tsai, D. P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401.

    Article  Google Scholar 

  49. Kazuma, E.; Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 4800–4808.

    Article  CAS  Google Scholar 

  50. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    Article  CAS  Google Scholar 

  51. Ahlawat, M.; Mittal, D.; Rao, V. G. Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis. Commun. Mater. 2021, 2, 114.

    Article  CAS  Google Scholar 

  52. Meng, X. G.; Liu, L. Q.; Ouyang, S. X.; Xu, H.; Wang, D. F.; Zhao, N. Q.; Ye, J. H. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 2016, 28, 6781–6803.

    Article  CAS  Google Scholar 

  53. Brooks, J. L.; Warkentin, C. L.; Saha, D.; Keller, E. L.; Frontiera, R. R. Toward a mechanistic understanding of plasmon-mediated photocatalysis. Nanophotonics 2018, 7, 1697–1724.

    Article  CAS  Google Scholar 

  54. Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

    Article  CAS  Google Scholar 

  55. Jung, I.; Kim, M.; Kwak, M.; Kim, G.; Jang, M.; Kim, S. M.; Park, D. J.; Park, S. Surface plasmon resonance extension through two-block metal-conducting polymer nanorods. Nat. Commun. 2018, 9, 1010.

    Article  Google Scholar 

  56. Li, D. B.; Sun, X. J.; Jia, Y. P.; Stockman, M. I.; Paudel, H. P.; Song, H.; Jiang, H.; Li, Z. M. Direct observation of localized surface plasmon field enhancement by kelvin probe force microscopy. Light Sci. Appl. 2017, 6, e17038.

    Article  CAS  Google Scholar 

  57. Ditlbacher, H.; Krenn, J. R.; Schider, G.; Leitner, A.; Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 2002, 81, 1762–1764.

    Article  CAS  Google Scholar 

  58. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  CAS  Google Scholar 

  59. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

    Article  CAS  Google Scholar 

  60. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

    Article  CAS  Google Scholar 

  61. Knobloch, H.; Brunner, H.; Leitner, A.; Aussenegg, F.; Knoll, W. Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and raman spectroscopies. J. Chem. Phys. 1993, 98, 10093–10095.

    Article  CAS  Google Scholar 

  62. Wang, M. Y.; Ye, M. D.; Iocozzia, J.; Lin, C. J.; Lin, Z. Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 2016, 3, 1600024.

    Article  Google Scholar 

  63. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111, 3669–3712.

    Article  CAS  Google Scholar 

  64. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

    Article  CAS  Google Scholar 

  65. Vu, N. N.; Kaliaguine, S.; Do, T. O. Plasmonic photocatalysts for sunlight-driven reduction of CO2: Details, developments, and perspectives. ChemSusChem 2020, 13, 3967–3991.

    Article  CAS  Google Scholar 

  66. Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

    Article  CAS  Google Scholar 

  67. Li, X. G., Xiao, D., Zhang, Z. Y. Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 2013, 15, 023011.

    Article  CAS  Google Scholar 

  68. Kreibig, U.; Vollmer, M. Theoretical considerations. In Optical Properties of Metal Clusters; Kreibig; U.; Vollmer, M., Eds.; Springer: Berlin, 1995; pp 13–201.

    Chapter  Google Scholar 

  69. Wang, Y.; Wang, Y.; Aravind, I.; Cai, Z.; Shen, L.; Zhang, B. X.; Wang, B.; Chen, J. H.; Zhao, B. F.; Shi, H. T. et al. In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. J. Am. Chem. Soc. 2022, 144, 3517–3526.

    Article  CAS  Google Scholar 

  70. Cortés, E.; Besteiro, L. V.; Alabastri, A.; Baldi, A.; Tagliabue, G.; Demetriadou, A.; Narang, P. Challenges in plasmonic catalysis. ACS Nano 2020, 14, 16202–16219.

    Article  Google Scholar 

  71. Cheng, G.; Zhang, M. M.; Han, C.; Liang, Y.; Zhao, K. Achieving solar-to-hydrogen evolution promotion using TiO2 nanoparticles and an unanchored Cu co-catalyst. Mater. Res. Bull. 2020, 129, 110891.

    Article  CAS  Google Scholar 

  72. Hao, W. M.; Zhao, L.; Li, X. Q.; Qin, L. X.; Han, S.; Kang, S. Z. Cu nanoclusters incorporated mesoporous TiO2 nanoparticles: An efficient and stable noble metal-free photocatalyst for light driven H2 generation. Int. J. Hydrogen Energy 2021, 46, 6461–6473.

    Article  CAS  Google Scholar 

  73. Song, R.; Liu, M. C.; Luo, B.; Geng, J. F.; Jing, D. W. Plasmon-induced photothermal effect of sub-10-nm Cu nanoparticles enables boosted full-spectrum solar H2 production. AIChE J. 2020, 66, e17008.

    Article  CAS  Google Scholar 

  74. Jiao, Z. B.; Shang, M. D.; Liu, J. M.; Lu, G. X.; Wang, X. S.; Bi, Y. P. The charge transfer mechanism of bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”. Nano Energy 2017, 31, 96–104.

    Article  CAS  Google Scholar 

  75. Zhao, Z. W.; Zhang, W. D.; Lv, X. S.; Sun, Y. J.; Dong, F.; Zhang, Y. X. Noble metal-free Bi nanoparticles supported on TiO2 with plasmon-enhanced visible light photocatalytic air purification. Environ. Sci. Nano 2016, 3, 1306–1317.

    Article  CAS  Google Scholar 

  76. Takahashi, Y.; Tatsuma, T. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett. 2011, 99, 182110.

    Article  Google Scholar 

  77. Kim, S.; Kim, J. M.; Park, J. E.; Nam, J. M. Nonnoble-metal-based plasmonic nanomaterials: Recent advances and future perspectives. Adv. Mater. 2018, 30, 1704528.

    Article  Google Scholar 

  78. Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041.

    Article  CAS  Google Scholar 

  79. Hu, C.; Peng, T. W.; Hu, X. X.; Nie, Y. L.; Zhou, X. F.; Qu, J. H.; He, H. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation. J. Am. Chem. Soc. 2010, 132, 857–862.

    Article  CAS  Google Scholar 

  80. Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys. 2010, 12, 2344–2355.

    Article  CAS  Google Scholar 

  81. Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H. C.; Krishnan, V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 2022, 18, 2101638.

    Article  CAS  Google Scholar 

  82. Liu, M. Y.; Kang, Q.; Xie, Z. C.; Lu, L. H.; Dai, K.; Dawson, G. Heterostructure nanocomposite with local surface plasmon resonance effect enhanced photocatalytic activity—A critical review. J. Phys. D:Appl. Phys. 2022, 55, 043002.

    Article  CAS  Google Scholar 

  83. Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 2006, 90, 619–627.

    Article  CAS  Google Scholar 

  84. Wang, S. J.; Huang, P.; Nie, L. M.; Xing, R. J.; Liu, D. B.; Wang, Z.; Lin, J.; Chen, S. H.; Niu, G.; Lu, G. M. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055–3061.

    Article  CAS  Google Scholar 

  85. Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3110–E3118.

    Article  CAS  Google Scholar 

  86. Meng, X. G.; Wang, T.; Liu, L. Q.; Ouyang, S. X.; Li, P.; Hu, H. L.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. H. Photothermal conversion of CO2 into CH4 with H2 over group viii nanocatalysts: An alternative approach for solar fuel production. Angew. Chem., Int. Ed. 2014, 53, 11478–11482.

    Article  CAS  Google Scholar 

  87. Huang, Z. L.; Liu, J. C.; Zong, S.; Wang, X. Y.; Chen, K. X.; Liu, L. L.; Fang, Y. X. Fabrication of graphitic carbon nitride/nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. J. Colloid Interface Sci. 2022, 606, 848–859.

    Article  CAS  Google Scholar 

  88. Zeng, Z. P.; Yan, Y. B.; Chen, J.; Zan, P.; Tian, Q. H.; Chen, P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by mxene quantum dots. Adv. Funct. Mater. 2019, 29, 1806500.

    Article  Google Scholar 

  89. Zhang, Y. Y.; Cheng, Y. R.; Yang, F.; Yuan, Z. P.; Wei, W.; Lu, H. T.; Dong, H. F.; Zhang, X. J. Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode photodynamic therapy combined photothermal therapy. Nano Today 2020, 34, 100919.

    Article  CAS  Google Scholar 

  90. Neumann, O.; Feronti, C.; Neumann, A. D.; Dong, A. J.; Schell, K.; Lu, B.; Kim, E.; Quinn, M.; Thompson, S.; Grady, N. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. USA 2013, 110, 11677–11681.

    Article  CAS  Google Scholar 

  91. Boerigter, C.; Aslam, U.; Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 2016, 10, 6108–6115.

    Article  CAS  Google Scholar 

  92. Da Silva, A. G. M.; Rodrigues, T. S.; Wang, J. L.; Camargo, P. H. C. Plasmonic catalysis with designer nanoparticles. Chem. Commun. 2022, 58, 2055–2074.

    Article  CAS  Google Scholar 

  93. Zhang, P. Y.; Liu, H. Y.; Li, X. M. Plasmonic CuCo/carbon dots: An unconventional photocatalyst used for photocatalytic overall water splitting. ACS Sustain. Chem. Eng. 2020, 8, 17979–17987.

    Article  CAS  Google Scholar 

  94. Li, S. W.; Miao, P.; Zhang, Y. Y.; Wu, J.; Zhang, B.; Du, Y. C.; Han, X. J.; Sun, J. M.; Xu, P. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 2021, 33, 2000086.

    Article  CAS  Google Scholar 

  95. Gellé, A.; Jin, T.; De La Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 2020, 120, 986–1041.

    Article  Google Scholar 

  96. Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J. W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J. Y. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices. Adv. Mater. 2018, 30, 1800659.

    Article  Google Scholar 

  97. Liu, L. Q.; Zhang, X. N.; Yang, L. F.; Ren, L. T.; Wang, D. F.; Ye, J. H. Metal nanoparticles induced photocatalysis. Natl. Sci. Rev. 2017, 4, 761–780.

    Article  CAS  Google Scholar 

  98. Wang, S. S.; Jiao, L.; Qian, Y. Y.; Hu, W. C.; Xu, G. Y.; Wang, C.; Jiang, H. L. Boosting electrocatalytic hydrogen evolution over metal-organic frameworks by plasmon-induced hot-electron injection. Angew. Chem. 2019, 131, 10823–10827.

    Article  Google Scholar 

  99. Kang, H.; Buchman, J. T.; Rodriguez, R. S.; Ring, H. L.; He, J. Y.; Bantz, K. C.; Haynes, C. L. Stabilization of silver and gold nanoparticles: Preservation and improvement of plasmonic functionalities. Chem. Rev. 2019, 119, 664–699.

    Article  CAS  Google Scholar 

  100. Xia, Y. S. Optical sensing and biosensing based on non-spherical noble metal nanoparticles. Anal. Bioanal. Chem. 2016, 408, 2813–2825.

    Article  CAS  Google Scholar 

  101. Xin, Y.; Yu, K. F.; Zhang, L. T.; Yang, Y. R.; Yuan, H. B.; Li, H. L.; Wang, L. B.; Zeng, J. Copper-based plasmonic catalysis: Recent advances and future perspectives. Adv. Mater. 2021, 33, 2008145.

    Article  CAS  Google Scholar 

  102. Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721.

    Article  CAS  Google Scholar 

  103. Li, J. H.; Xiong, L. Q.; Luo, B.; Jing, D. W.; Cao, J. M.; Tang, J. W. Hollow carbon sphere-modified graphitic carbon nitride for efficient photocatalytic H2 production. Chem.—Eur. J. 2021, 27, 16879–16888.

    Article  CAS  Google Scholar 

  104. Lu, S. S.; Liu, F. L.; Qiu, P. X.; Qiao, M.; Li, Y. F.; Cheng, Z. W.; Xue, N. X.; Hou, X. K.; Xu, C. M.; Xiang, Y. B. et al. Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards practical application. Chem. Eng. J. 2020, 379, 122382.

    Article  CAS  Google Scholar 

  105. Ali, N.; Tsega, T. T.; Cao, Y. C.; Abbas, S.; Li, W. J.; Iqbal, A.; Fazal, H.; Xin, Z. L.; Zai, J. T.; Qian, X. F. Copper vacancy activated plasmonic Cu3−xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential. Nano Res. 2021, 14, 3358–3364.

    Article  CAS  Google Scholar 

  106. Sayed, M.; Yu, J. G.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537.

    Article  CAS  Google Scholar 

  107. Zhang, P. Y.; Zeng, G. C.; Song, T.; Huang, S. B.; Wang, T. T.; Zeng, H. P. Synthesis of a plasmonic cuni bimetal modified with carbon quantum dots as a non-semiconductor-driven photocatalyst for effective water splitting. J. Catal. 2019, 369, 267–275.

    Article  CAS  Google Scholar 

  108. Bhattacharya, C.; Saji, S. E.; Mohan, A.; Madav, V.; Jia, G. H.; Yin, Z. Y. Sustainable nanoplasmon-enhanced photoredox reactions: Synthesis, characterization, and applications. Adv. Energy Mater. 2020, 10, 2002402.

    Article  CAS  Google Scholar 

  109. Ren, K.; Yin, P. E.; Zhou, Y. Z.; Cao, X. Z.; Dong, C. K.; Cui, L.; Liu, H.; Du, X. W. Localized defects on copper sulfide surface for enhanced plasmon resonance and water splitting. Small 2017, 13, 1700867.

    Article  Google Scholar 

  110. Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

    Article  CAS  Google Scholar 

  111. Mondal, I.; Gonuguntla, S.; Pal, U. Photoinduced fabrication of Cu/TiO2 core—shell heterostructures derived from Cu-MoF for solar hydrogen generation: The size of the Cu nanoparticle matters. J. Phys. Chem. C 2019, 123, 26073–26081.

    Article  CAS  Google Scholar 

  112. Redfern, L. R.; Li, Z. Y.; Zhang, X.; Farha, O. K. Highly selective acetylene semihydrogenation catalyzed by Cu nanoparticles supported in a metal-organic framework. ACS Appl. Nano Mater. 2018, 1, 4413–4417.

    Article  CAS  Google Scholar 

  113. Xiong, H. L.; Dong, Y. Y.; Liu, D.; Long, R.; Kong, T. T.; Xiong, Y. J. Recent advances in porous materials for photocatalytic CO2 reduction. J. Phys. Chem. Lett. 2022, 13, 1272–1282.

    Article  CAS  Google Scholar 

  114. He, X. Y.; Liu, M.; Liang, Z.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Zheng, Z. K.; Huang, B. B. Photo-enhanced CO2 hydrogenation by plasmonic Cu/ZnO at atmospheric pressure. J. Solid State Chem. 2021, 298, 122113.

    Article  CAS  Google Scholar 

  115. Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K. Highly enhanced full solar spectrum-driven photocatalytic CO2 reduction performance in Cu2−xS/g-C3N4 composite: Efficient charge transfer and mechanism insight. Sol. RRL 2021, 5, 2000326.

    Article  CAS  Google Scholar 

  116. Liu, X. L.; Liu, Q.; Wang, P.; Liu, Y. Z.; Huang, B. B.; Rozhkova, E. A.; Zhang, Q. Q.; Wang, Z. Y.; Dai, Y.; Lu, J. Efficient photocatalytic H2 production via rational design of synergistic spatially-separated dual cocatalysts modified Mn05Cd0.5S photocatalyst under visible light irradiation. Chem. Eng. J. 2018, 337, 480–487.

    Article  CAS  Google Scholar 

  117. Li, K. K.; Li, S.; Zhang, W. L.; Shi, Z. F.; Wu, D; Chen, X.; Lin, P.; Tian, Y. T.; Li, X. J. Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation. J. Colloid. Interface Sci. 2021, 596, 376–383.

    Article  CAS  Google Scholar 

  118. Manuel, A. P.; Shankar, K. Hot electrons in TiO2-noble metal nano-heterojunctions: Fundamental science and applications in photocatalysis. Nanomaterials 2021, 11, 1249.

    Article  CAS  Google Scholar 

  119. Sengan, M.; Veerappan, A. N-myristoyltaurine capped copper nanoparticles for selective colorimetric detection of Hg2+ in wastewater and as effective chemocatalyst for organic dye degradation. Microchem. J. 2019, 148, 1–9.

    Article  CAS  Google Scholar 

  120. Lv, Y. H.; Cao, X. F.; Jiang, H. Y.; Song, W. J.; Chen, C. C.; Zhao, J. C. Rapid photocatalytic debromination on TiO2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity. Appl. Catal. B: Environ. 2016, 194, 150–156.

    Article  CAS  Google Scholar 

  121. Chen, H. L.; Xu, S. Y.; Cui, J. B.; Wang, L. Y. Cu2−xS/graphene oxide nanocomposites for efficient photocatalysis driven by real sunlight. RSC Adv. 2015, 5, 94375–94379.

    Article  CAS  Google Scholar 

  122. Zhang, X. Y.; Zhou, J. F.; Yang, D. P.; Chen, S. Y.; Huang, J. L.; Li, Z. B. Cu2−xS loaded diatom nanocomposites as novel photocatalysts for efficient photocatalytic degradation of organic pollutants. Catal. Today 2019, 335, 228–235.

    Article  CAS  Google Scholar 

  123. Zeng, D. Q.; Gong, P. Y.; Chen, Y. Z.; Zhang, Q. F.; Xie, Q. S.; Peng, D. L. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties. Nanoscale 2016, 8, 11602–11610.

    Article  CAS  Google Scholar 

  124. Yang, X. L.; Zhong, H.; Zhu, Y. H.; Jiang, H. L.; Shen, J. H.; Huang, J. F.; Li, C. Z. Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2014, 2, 9040–9047.

    Article  CAS  Google Scholar 

  125. Rekeb, L.; Hamadou, L.; Kadri, A.; Benbrahim, N.; Chainet, E. Highly broadband plasmonic Cu film modified Cu2O/TiO2 nanotube arrays for efficient photocatalytic performance. Int. J. Hydrogen Energy 2019, 44, 10541–10553.

    Article  CAS  Google Scholar 

  126. Chen, Y. Y.; Wu, T.; Gao, P.; Li, N.; Wan, X. Y.; Wang, J. B.; Pan, W.; Tang, B. A Cu2+ doped mesoporous polydopamine Fenton nanoplatform for low-temperature photothermal therapy. Mater. Chem. Front. 2021, 5, 6546–6552.

    Article  CAS  Google Scholar 

  127. Tao, B. L.; Lin, C. C.; Deng, Y. M.; Yuan, Z.; Shen, X. K.; Chen, M. W.; He, Y.; Peng, Z. H.; Hu, Y.; Cai, K. Y. Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. J. Mater. Chem. B 2019, 7, 2534–2548.

    Article  CAS  Google Scholar 

  128. Geng, P.; Yu, N.; Macharia, D. K.; Meng, R. R.; Qiu, P.; Tao, C.; Li, M. Q.; Zhang, H. J.; Chen, Z. G.; Lian, W. S. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy. Chem. Eng. J. 2022, 441, 135964.

    Article  CAS  Google Scholar 

  129. Toudert, J.; Serna, R.; Jiménez De Castro, M. Exploring the optical potential of nano-bismuth: Tunable surface plasmon resonances in the near ultraviolet-to-near infrared range. J. Phys. Chem. C 2012, 116, 20530–20539.

    Article  CAS  Google Scholar 

  130. Dong, F.; Xiong, T.; Sun, Y. J.; Zhao, Z. W.; Zhou, Y.; Feng, X.; Wu, Z. B. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014, 50, 10386–10389.

    Article  CAS  Google Scholar 

  131. Wang, Z.; Jiang, C. L.; Huang, R.; Peng, H.; Tang, X. D. Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J. Phys. Chem. C 2014, 118, 1155–1160.

    Article  CAS  Google Scholar 

  132. Guo, C. B.; Hu, R.; Qiao, H.; Duan, C. G.; Qi, X. TiO2 nanoparticles anchoring on two-dimensional Bi2Se3 nanosheet as an enhanced visible light catalyst. J. Mater. Sci. Mater. Electron. 2021, 32, 19424–19433.

    Article  CAS  Google Scholar 

  133. Autore, M.; Di Pietro, P.; Di Gaspare, A.; D’Apuzzo, F.; Giorgianni, F.; Brahlek, M.; Koirala, N.; Oh, S.; Lupi, S. Terahertz plasmonic excitations in Bi2Se3 topological insulator. J. Phys.: Condens. Matter 2017, 29, 183002.

    CAS  Google Scholar 

  134. Gupta, A.; Chowdhury, R. K.; Ray, S. K.; Srivastava, S. K. Selective photoresponse of plasmonic silver nanoparticle decorated Bi2Se3 nanosheets. Nanotechnology 2019, 30, 435204.

    Article  CAS  Google Scholar 

  135. Zhao, H.; Liang, Z. Q.; Liu, X.; Qiu, P. Y.; Cui, H. Z.; Tian, J. Noble metal-like behavior of plasmonic Bi particles deposited on reduced TiO2 microspheres for efficient full solar spectrum photocatalytic oxygen evolution. Chin. J. Catal. 2020, 41, 333–340.

    Article  CAS  Google Scholar 

  136. Liu, L. Z.; Dai, K.; Zhang, J. F.; Li, L. L. Plasmonic Bi-enhanced ammoniated α-MnS/Bi2MoO6 S-scheme heterostructure for visible-light-driven CO2 reduction. J. Colloid Interface Sci. 2021, 604, 844–855.

    Article  CAS  Google Scholar 

  137. Li, X. W.; Sun, Y. J.; Xiong, T.; Jiang, G. M.; Zhang, Y. X.; Wu, Z. B.; Dong, F. Activation of amorphous bismuth oxide via plasmonic bi metal for efficient visible-light photocatalysis. J. Catal. 2017, 352, 102–112.

    Article  CAS  Google Scholar 

  138. Liu, J.; Li, Y.; Li, Z. W.; Ke, J.; Xiao, H. N.; Hou, Y. In situ growing of Bi/Bi2O2CO3 on Bi2WO6 nanosheets for improved photocatalytic performance. Catal. Today 2018, 314, 2–9.

    Article  CAS  Google Scholar 

  139. Li, X. W.; Zhang, W. D.; Cui, W.; Sun, Y. J.; Jiang, G. M.; Zhang, Y. X.; Huang, H. W.; Dong, F. Bismuth spheres assembled on graphene oxide: Directional charge transfer enhances plasmonic photocatalysis and in situ drifts studies. Appl. Catal. B: Environ. 2018, 221, 482–489.

    Article  CAS  Google Scholar 

  140. Liang, C.; Niu, C. G.; Zhang, L.; Wen, X. J.; Yang, S. F.; Guo, H.; Zeng, G. M. Construction of 2D heterojunction system with enhanced photocatalytic performance: Plasmonic Bi and reduced graphene oxide Co-modified Bi5O7I with high-speed charge transfer channels. J. Hazard. Mater. 2019, 361, 245–258.

    Article  CAS  Google Scholar 

  141. Li, B.; Cheng, Y.; Zheng, R. X.; Wu, X. Q.; Qi, F.; Wu, Y. Y.; Hu, Y. Q.; Li, X. Improving the photothermal therapy efficacy and preventing the surface oxidation of bismuth nanoparticles through the formation of a bismuth@bismuth selenide heterostructure. J. Mater. Chem. B 2020, 8, 8803–8808.

    Article  CAS  Google Scholar 

  142. Wu, Q.; Tan, L.; Liu, X. M.; Li, Z. Y.; Zhang, Y.; Zheng, Y. F.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Wu, S. L. The enhanced near-infrared photocatalytic and photothermal effects of mxene-based heterojunction for rapid bacteria-killing. Appl. Catal. B: Environ. 2021, 297, 120500.

    Article  CAS  Google Scholar 

  143. Cheng, H. F.; Klapproth, M.; Sagaltchik, A.; Li, S.; Thomas, A. Ordered mesoporous WO283: Selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. J. Mater. Chem. A 2018, 6, 2249–2256.

    Article  CAS  Google Scholar 

  144. Liu, J.; Ma, S.; Chen, K.; Wang, W.; Wang, P.-F,; Zhou, L.; Wang, Q.-Q. Hydrogenation and plasmon-enhanced photocatalytic activity of rhenium oxide nanosheets. J. Alloys Compd. 2021, 855, 157254.

    Article  CAS  Google Scholar 

  145. Li, B. S.; Lai, C.; Lin, H. J.; Liu, S. Y.; Qin, L.; Zhang, M. M.; Zhou, M. Z.; Li, L.; Yi, H.; Chen, L. The promising NIR light-driven MO3−x (M = Mo, W) photocatalysts for energy conversion and environmental remediation. Chem. Eng. J. 2022, 431, 134044.

    Article  CAS  Google Scholar 

  146. Lu, C. H.; Li, J.; Chen, G. Y.; Li, B. J.; Lou, Z. Z. Self-Z-scheme plasmonic tungsten oxide nanowires for boosting ethanol dehydrogenation under UV—visible light irradiation. Nanoscale 2019, 11, 12774–12780.

    Article  CAS  Google Scholar 

  147. Lv, C.; Wang, L. L.; Liu, X. G.; Zhao, L.; Lan, X. F.; Shi, J. S. An efficient inverse opal (IO)-TiO2-MoO3−x for photocatalytic H2 evolution and RhB degradation-the synergy effect of IO structure and plasmonic MoO3−x. Appl. Surf. Sci. 2020, 527, 146726.

    Article  CAS  Google Scholar 

  148. Paik, T.; Cargnello, M.; Gordon, T. R.; Zhang, S.; Yun, H.; Lee, J. D.; Woo, H. Y.; Oh, S. J.; Kagan, C. R.; Fornasiero, P. et al. Photocatalytic hydrogen evolution from substoichiometric colloidal WO3−x nanowires. ACS Energy Lett. 2018, 3, 1904–1910.

    Article  CAS  Google Scholar 

  149. Zhang, X. L.; Wang, X.; Yi, X. L.; Liu, L. Q.; Ye, J. H.; Wang, D. F. Metal-reduced WO3−x electrodes with tunable plasmonic resonance for enhanced photoelectrochemical water splitting. ACS Appl. Energy Mater. 2020, 3, 3569–3576.

    Article  CAS  Google Scholar 

  150. Guo, Y. Z.; Chang, B. B.; Wen, T.; Zhang, S. R.; Zeng, M.; Hu, N. T.; Su, Y. J.; Yang, Z.; Yang, B. C. A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3−x nanoplates onto 2D g-C3N4 nanosheets. J. Colloid Interface Sci. 2020, 567, 213–223.

    Article  CAS  Google Scholar 

  151. Lou, Z. Z.; Zhu, M. S.; Yang, X. G.; Zhang, Y.; Whangbo, M. H.; Li, B. J.; Huang, B. B. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3−x for efficient hydrogen generation. Appl. Catal. B: Environ. 2018, 226, 10–15.

    Article  CAS  Google Scholar 

  152. Guo, S. H.; Li, X. H.; Ren, X. G.; Yang, L.; Zhu, J. M.; Wei, B. Q. Optical and electrical enhancement of hydrogen evolution by MoS2@MoO3 core—shell nanowires with designed tunable plasmon resonance. Adv. Funct. Mater. 2018, 28, 1802567.

    Article  Google Scholar 

  153. Spetter, D.; Tahir, M. N.; Hilgert, J.; Khan, I.; Qurashi, A.; Lu, H.; Weidner, T.; Tremel, W. Solvothermal synthesis of molybdenum-tungsten oxides and their application for photoelectrochemical water splitting. ACS Sustainable Chem. Eng. 2018, 6, 12641–12649.

    Article  CAS  Google Scholar 

  154. Lin, Z. Y.; Du, C.; Yan, B.; Wang, C. X.; Yang, G. W. Two-dimensional amorphous NiO as a plasmonic photocatalyst for solar H2 evolution. Nat. Commun. 2018, 9, 4036.

    Article  Google Scholar 

  155. Liu, Q. Q.; He, X. D.; Peng, J. J.; Yu, X. H.; Tang, H.; Zhang, J. Hot-electron-assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation. Chin. J. Catal. 2021, 42, 1478–1487.

    Article  CAS  Google Scholar 

  156. Patra, K. K.; Ghosalya, M. K.; Bajpai, H.; Raj, S.; Gopinath, C. S. Oxidative disproportionation of MoS2/go to MoS2/MoO3−x/RGO: Integrated and plasmonic 2D-multifunctional nanocomposites for solar hydrogen generation from near-infrared and visible regions. J. Phys. Chem. C 2019, 123, 21685–21693.

    Article  CAS  Google Scholar 

  157. Pan, L.; Zhang, J. W.; Jia, X.; Ma, Y. H.; Zhang, X. W.; Wang, L.; Zou, J. J. Highly efficient Z-scheme WO3−x quantum dots/TiO2 for photocatalytic hydrogen generation. Chin. J. Catal. 2017, 38, 253–259.

    Article  CAS  Google Scholar 

  158. Zhang, Z. Y.; Jiang, X. Y.; Liu, B. K.; Guo, L. J.; Lu, N.; Wang, L.; Huang, J. D.; Liu, K. C.; Dong, B. IR-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation. Adv. Mater. 2018, 30, 1705221.

    Article  Google Scholar 

  159. Shang, J. Y.; Xu, X. S.; Liu, K. C.; Bao, Y. N.; Yangyang; He, M. LSPR-driven upconversion enhancement and photocatalytic H2 evolution for Er-Yb: TiO2/MoO3−x nano-semiconductor heterostructure. Ceram. Int. 2019, 45, 16625–16630.

    Article  Google Scholar 

  160. Yin, H. B.; Kuwahara, Y.; Mori, K.; Cheng, H. F.; Wen, M. C.; Huo, Y. N.; Yamashita, H. Localized surface plasmon resonances in plasmonic molybdenum tungsten oxide hybrid for visible-light-enhanced catalytic reaction. J. Phys. Chem. C 2017, 121, 23531–23540.

    Article  CAS  Google Scholar 

  161. Yin, H. B.; Kuwahara, Y.; Mori, K.; Cheng, H. F.; Wen, M. C.; Yamashita, H. High-surface-area plasmonic MoO3−x: Rational synthesis and enhanced ammonia borane dehydrogenation activity. J. Mater. Chem. A 2017, 5, 8946–8953.

    Article  CAS  Google Scholar 

  162. Lu, N.; Zhang, Z. Y.; Wang, Y.; Liu, B. K.; Guo, L. J.; Wang, L.; Huang, J. D.; Liu, K. C.; Dong, B. Direct evidence of IR-driven hot electron transfer in metal-free plasmonic W18O49/carbon heterostructures for enhanced catalytic H2 production. Appl. Catal. B: Environ. 2018, 233, 19–25.

    Article  CAS  Google Scholar 

  163. Li, J.; Ye, Y. H.; Ye, L. Q.; Su, F. Y.; Ma, Z. Y.; Huang, J. D.; Xie, H. Q.; Doronkin, D. E.; Zimina, A.; Grunwaldt, J. D. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3_x. J. Mater. Chem. A 2019, 7, 2821–2830.

    Article  CAS  Google Scholar 

  164. Li, J.; Xu, X. H.; Huang, B. B.; Lou, Z. Z.; Li, B. J. Light-induced in situ formation of a nonmetallic plasmonic MoS2/MoO3−x heterostructure with efficient charge transfer for CO2 reduction and SERS detection. ACS Appl. Mater. Interfaces 2021, 13, 10047–10053.

    Article  CAS  Google Scholar 

  165. Xie, S. J.; Zhang, H. K.; Liu, G. D.; Wu, X. J.; Lin, J. C.; Zhang, Q. H.; Wang, Y. Tunable localized surface plasmon resonances in MoO3−x-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light. Chin. J. Catal. 2020, 41, 1125–1131.

    Article  CAS  Google Scholar 

  166. Lou, Z. Z.; Zhang, P.; Li, J.; Yang, X. G.; Huang, B. B.; Li, B. J. Plasmonic heterostructure TiO2-MCs/WO3−x-NWs with continuous photoelectron injection boosting hot electron for methane generation. Adv. Funct. Mater. 2019, 29, 1808696.

    Article  Google Scholar 

  167. Lu, C. H.; Li, J.; Yan, J. H.; Li, B. J.; Huang, B. B.; Lou, Z. Z. Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene. Appl. Mater. Today 2020, 20, 100744.

    Article  Google Scholar 

  168. Stanley, R.; Alphas Jebasingh, J.; Manisha Vidyavathy, S. Enhanced sunlight photocatalytic degradation of methylene blue by rod-like ZnO-SiO2 nanocomposite. Optik 2019, 180, 134–143.

    Article  Google Scholar 

  169. Tang, H. B.; Tang, Z. H.; Bright, J.; Liu, B. T.; Wang, X. J.; Meng, G. W.; Wu, N. O. Visible-light localized surface plasmon resonance of WO3−x nanosheets and its photocatalysis driven by plasmonic hot carriers. ACS Sustainable Chem. Eng. 2021, 9, 1500–1506.

    Article  CAS  Google Scholar 

  170. Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Liu, Y. N.; Ouyang, X. L.; Chen, Z. M.; Yang, H. R.; Yu, J. F.; Wang, J. J. Maintaining stable LSPR performance of W18O49 by protecting its oxygen vacancy: A novel strategy for achieving durable sunlight driven photocatalysis. Appl. Catal. B: Environ. 2020, 276, 119167.

    Article  CAS  Google Scholar 

  171. Liu, Q. W.; Wu, Y. W.; Zhang, J. W.; Chen, K. J.; Huang, C. J.; Chen, H.; Qiu, X. Q. Plasmonic MoO3−x nanosheets with tunable oxygen vacancies as efficient visible light responsive photocatalyst. Appl. Surf. Sci. 2019, 490, 395–402.

    Article  CAS  Google Scholar 

  172. Kang, Y.; Wu, X. M.; Gao, Q. Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)033WO3 nanorods. ACS Sustainable Chem. Eng. 2019, 7, 4210–4219.

    Article  CAS  Google Scholar 

  173. Zheng, F.; Dong, F. Q.; Lv, Z. Z.; Li, H. L.; Zhou, L.; Chen, Y. H.; Huo, T. T.; Luo, X. J. A novel g-C3N4/tourmaline composites equipped with plasmonic MoO3−x to boost photocatalytic activity. Colloids Interface Sci. Commun. 2021, 43, 100434.

    Article  CAS  Google Scholar 

  174. Yang, J. Y.; Liu, J. X.; Qiao, Y. T.; Shi, F.; Ran, S.; Dong, Y. T.; Liu, S. H. In situ synthesis of bifunctional TiO2-CsxWO3 composite particles with transparent heat shielding and photocatalytic activity. CrystEngComm 2020, 22, 573–586.

    Article  CAS  Google Scholar 

  175. Li, Y.; Wu, X. Y.; Li, J.; Wang, K.; Zhang, G. K. Z-scheme g-C3N4@CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs. Appl. Catal. B: Environ. 2018, 229, 218–226.

    Article  CAS  Google Scholar 

  176. Nayak, A. K.; Pradhan, D. Microwave-assisted greener synthesis of defect-rich tungsten oxide nanowires with enhanced photocatalytic and photoelectrochemical performance. J. Phys. Chem. C 2018, 122, 3183–3193.

    Article  CAS  Google Scholar 

  177. Zhang, W. L.; Deng, G. Y.; Li, B.; Zhao, X. X.; Ji, T.; Song, G. S.; Xiao, Z. Y.; Cao, Q.; Xiao, J. B.; Huang, X. J. et al. Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials 2018, 159, 68–81.

    Article  CAS  Google Scholar 

  178. Odda, A. H.; Xu, Y. C.; Lin, J.; Wang, G.; Ullah, N.; Zeb, A.; Liang, K.; Wen, L. P.; Xu, A. W. Plasmonic MoO3−x nanoparticles incorporated in prussian blue frameworks exhibit highly efficient dual photothermal/photodynamic therapy. J. Mater. Chem. B 2019, 7, 2032–2042.

    Article  CAS  Google Scholar 

  179. Li, R.; An, H. J.; Huang, W.; He, Y. Molybdenum oxide nanosheets meet ascorbic acid: Tunable surface plasmon resonance and visual colorimetric detection at room temperature. Sens. Actuators B:Chem. 2018, 259, 59–63.

    Article  CAS  Google Scholar 

  180. Wang, J. H.; Yang, Y. H.; Li, H.; Gao, J.; He, P.; Bian, L.; Dong, F. Q.; He, Y. Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced raman analysis. Chem. Sci. 2019, 10, 6330–6335.

    Article  CAS  Google Scholar 

  181. Shi, Y. Z.; Liu, Q. Y.; Hong, R. J.; Tao, C. X.; Wang, Q.; Lin, H.; Han, Z. X.; Zhang, D. W. SERS-active WO3−x thin films with tunable surface plasmon resonance induced by defects from thermal treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120686.

    Article  CAS  Google Scholar 

  182. Song, K. N.; Liu, X. M.; Tian, C.; Deng, H.; Wang, J. D.; Su, X. T. Oxygen defect-rich WO3−x nanostructures with high photocatalytic activity for dehydration of isopropyl alcohol to propylene. Surf. Interfaces 2019, 14, 245–250.

    Article  CAS  Google Scholar 

  183. Li, J.; Chen, G. Y.; Yan, J. H.; Huang, B. B.; Cheng, H. F.; Lou, Z. Z.; Li, B. J. Solar-driven plasmonic tungsten oxides as catalyst enhancing ethanol dehydration for highly selective ethylene production. Appl. Catal. B:Environ. 2020, 264, 118517.

    Article  CAS  Google Scholar 

  184. Li, Y. H.; Chen, X.; Zhang, M. J.; Zhu, Y. M.; Ren, W. J.; Mei, Z. W.; Gu, M.; Pan, F. Oxygen vacancy-rich MoO3−x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 2019, 9, 803–810.

    Article  CAS  Google Scholar 

  185. Wu, H. Y.; Li, X.; Cheng, Y.; Xiao, Y. H.; Li, R. F.; Wu, Q. P.; Lin, H.; Xu, J.; Wang, G. Q.; Lin, C. et al. Plasmon-driven N2 photofixation in pure water over MoO3−x nanosheets under visible to nir excitation. J. Mater. Chem. A 2020, 8, 2827–2835.

    Article  CAS  Google Scholar 

  186. Ai, S.; Ma, M.; Chen, Y. Z.; Gao, X. H.; Liu, G. Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination. Chem. Eng. J. 2022, 429, 132014.

    Article  CAS  Google Scholar 

  187. Cheng, Z. X.; Qi, W. L.; Pang, C. H.; Thomas, T.; Wu, T.; Liu, S. Q.; Yang, M. H. Recent advances in transition metal nitride-based materials for photocatalytic applications. Adv. Funct. Mater. 2021, 31, 2100553.

    Article  CAS  Google Scholar 

  188. Liu, Y. T.; Lu, M. Y.; Perng, T. P.; Chen, L. J. Plasmonic enhancement of hydrogen production by water splitting with cds nanowires protected by metallic tin overlayers as highly efficient photocatalysts. Nano Energy 2021, 89, 106407.

    Article  CAS  Google Scholar 

  189. Liu, Y.; Zhang, X. W.; Lu, L. S.; Ye, J.; Wang, J. L.; Li, X. M.; Bai, X. D.; Wang, W. L. Nanoplasmonic zirconium nitride photocatalyst for direct overall water splitting. Chin. Chem. Lett. 2022, 33, 1271–1274.

    Article  CAS  Google Scholar 

  190. Zhu, Q. B.; Xuan, Y. M.; Zhang, K.; Chang, K. Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles. Appl. Catal. B: Environ. 2021, 297, 120440.

    Article  CAS  Google Scholar 

  191. Huang, W. C.; Meng, H. X.; Gao, Y.; Wang, J. X.; Yang, C. Y.; Liu, D. Q.; Liu, J.; Guo, C. S.; Yang, B.; Cao, W. W. Metallic tungsten carbide nanoparticles as a near-infrared-driven photocatalyst. J. Mater. Chem. A 2019, 7, 18538–18546.

    Article  CAS  Google Scholar 

  192. Han, N. N.; Liu, K.; Zhang, X. P.; Wang, M.; Du, P.; Huang, Z. H.; Zhou, D. J.; Zhang, Q.; Gao, T. F.; Jia, Y. et al. Highly efficient and stable solar-powered desalination by tungsten carbide nanoarray film with sandwich wettability. Sci. Bull. 2019, 64, 391–399.

    Article  CAS  Google Scholar 

  193. Li, C.; Yang, W. Y.; Li, Q. TiO2-based photocatalysts prepared by oxidation of TiN nanoparticles and their photocatalytic activities under visible light illumination. J. Mater. Sci. Technol. 2018, 34, 969–975.

    Article  CAS  Google Scholar 

  194. Liu, J. M.; Wang, A. Z.; Liu, S. H.; Yang, R. Q.; Wang, L. W.; Gao, F. N.; Zhou, H. G.; Yu, X.; Liu, J.; Chen, C. Y. A titanium nitride nanozyme for pH-responsive and irradiation-enhanced cascade-catalytic tumor therapy. Angew. Chem., Int. Ed. 2021, 60, 25328–25338.

    Article  CAS  Google Scholar 

  195. Nyamukamba, P.; Tichagwa, L.; Ngila, J. C.; Petrik, L. Plasmonic metal decorated titanium dioxide thin films for enhanced photodegradation of organic contaminants. J. Photochem. Photobiol. A: Chem. 2017, 343, 85–95.

    Article  CAS  Google Scholar 

  196. Ma, B.; Kong, C. C.; Lv, J.; Zhang, W. X.; Guo, J.; Zhang, X. J.; Yang, Z. M.; Yang, S. Controllable in-situ synthesis of Cu-Cu2O heterostructures with enhanced visible-light photocatalytic activity. ChemistrySelect 2018, 3, 10641–10645.

    Article  CAS  Google Scholar 

  197. Bao, Y. C.; Chen, K. Z. A novel Z-scheme visible light driven Cu2O/Cu/g-C3N4 photocatalyst using metallic copper as a charge transfer mediator. Mol. Catal. 2017, 432, 187–195.

    Article  CAS  Google Scholar 

  198. Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. Effectively extending visible light absorption with a broad spectrum sensitizer for improving the H2 evolution of in-situ Cu/g-C3N4 nanocomponents. Int. J. Hydrogen Energy 2017, 42, 14511–14521.

    Article  CAS  Google Scholar 

  199. Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. In-situ synthesis of Cu nanoparticles hybridized with carbon quantum dots as a broad spectrum photocatalyst for improvement of photocatalytic H2 evolution. Appl. Catal. B: Environ. 2017, 206, 328–335.

    Article  CAS  Google Scholar 

  200. Huang, T. B.; Xu, Z. X.; Zeng, G. C.; Zhang, P. Y.; Song, T.; Wang, Y. L.; Wang, T.; Huang, S. B.; Wang, T. T.; Zeng, H. P. Selective deposition of plasmonic copper on few layers graphene with specific defects for efficiently synchronous photocatalytic hydrogen production. Carbon 2019, 143, 257–267.

    Article  CAS  Google Scholar 

  201. Zhang, P. Y.; Song, T.; Wang, T. T.; Zeng, H. P. Plasmonic Cu nanoparticle on reduced graphene oxide nanosheet support: An efficient photocatalyst for improvement of near-infrared photocatalytic H2 evolution. Appl. Catal. B: Environ. 2018, 225, 172–179.

    Article  CAS  Google Scholar 

  202. Lou, Y. B.; Zhang, Y. K.; Cheng, L.; Chen, J. X.; Zhao, Y. X. A stable plasmonic Cu@Cu2O/ZnO heterojunction for enhanced photocatalytic hydrogen generation. ChemSusChem 2018, 11, 1505–1511.

    Article  CAS  Google Scholar 

  203. Xu, X. Y.; Luo, F. T.; Tang, W. S.; Hu, J. G.; Zeng, H. B.; Zhou, Y. Enriching hot electrons via NIR-photon-excited plasmon in WS2@Cu hybrids for full-spectrum solar hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1804055.

    Article  Google Scholar 

  204. Zhang, P. Y.; Zeng, G. C.; Song, T.; Huang, S. B.; Wang, T. T.; Zeng, H. P. Design of plasmonic CuCo bimetal as a nonsemiconductor photocatalyst for synchronized hydrogen evolution and storage. Appl. Catal. B: Environ. 2019, 242, 389–396.

    Article  CAS  Google Scholar 

  205. Zhao, J.; Li, Y. X.; Zhu, Y. Q.; Wang, Y.; Wang, C. Y. Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Appl. Catal. A Gen. 2016, 510, 34–41.

    Article  CAS  Google Scholar 

  206. Sayed, M.; Zhang, L. Y.; Yu, J. G. Plasmon-induced interfacial charge-transfer transition prompts enhanced CO2 photoreduction over Cu/Cu2O octahedrons. Chem. Eng. J. 2020, 397, 125390.

    Article  CAS  Google Scholar 

  207. Wang, B.; Feng, W. H.; Zhang, L. L.; Zhang, Y.; Huang, X. Y.; Fang, Z. B.; Liu, P. In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl. Catal. B: Environ. 2017, 206, 510–519.

    Article  CAS  Google Scholar 

  208. Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Tu, W. G.; Sheng, C.; Deng, Y. C.; Chen, F.; Chew, J. W. Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn(OH)6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis. Appl. Catal. B: Environ. 2017, 209, 543–553.

    Article  CAS  Google Scholar 

  209. Chen, D. D.; Wu, S. X.; Fang, J. Z.; Lu, S. Y.; Zhou, G. Y.; Feng, W. H.; Yang, F.; Chen, Y.; Fang, Z. Q. A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep. Purif. Technol. 2018, 193, 232–241.

    Article  CAS  Google Scholar 

  210. Guo, M. J.; Zhao, T. Y.; Xing, Z. P.; Qiu, Y. L.; Pan, K.; Li, Z. Z.; Yang, S. L.; Zhou, W. Hollow octahedral Cu2−xS/CdS/Bi2S3 p-n-p type tandem heterojunctions for efficient photothermal effect and robust visible-light-driven photocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 40328–40338.

    Article  CAS  Google Scholar 

  211. Chen, X.; Li, Q.; Li, J. J.; Chen, J.; Jia, H. P. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 270, 118915.

    Article  CAS  Google Scholar 

  212. Chang, X. F.; Xie, L.; Sha, W. E. I.; Lu, K.; Qi, Q.; Dong, C. Y.; Yan, X. X.; Gondal, M. A.; Rashid, S. G.; Dai, Q. I. et al. Probing the light harvesting and charge rectification of bismuth nanoparticles behind the promoted photoreactivity onto Bi/BiOCl catalyst by (in-situ) electron microscopy. Appl. Catal. B: Environ. 2017, 201, 495–502.

    Article  CAS  Google Scholar 

  213. Wang, H.; Zhang, W. D.; Li, X. W.; Li, J. Y.; Cen, W. L.; Li, Q. Y.; Dong, F. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective biocl hierarchical microspheres. Appl. Catal. B:Environ. 2018, 225, 218–227.

    Article  CAS  Google Scholar 

  214. Dong, X. A.; Zhang, W. D.; Sun, Y. J.; Li, J. Y.; Cen, W. L.; Cui, Z. H.; Huang, H. W.; Dong, F. Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres. J. Catal. 2018, 357, 41–50.

    Article  Google Scholar 

  215. Xu, X. M.; Meng, L. J.; Dai, Y. X.; Zhang, M.; Sun, C.; Yang, S. G.; He, H.; Wang, S. M.; Li, H. Bi spheres SPR-coupled Cu2O/Bi2MoO6 with hollow spheres forming Z-scheme Cu2O/Bi/Bi2MoO6 heterostructure for simultaneous photocatalytic decontamination of sulfadiazine and Ni(II). J. Hazard Mater. 2020, 381, 120953.

    Article  CAS  Google Scholar 

  216. Liu, Z. Y.; Wang, Q. Y.; Tan, X. Y.; Zheng, S. X.; Zhang, H.; Wang, Y. J.; Gao, S. M. Solvothermal preparation of Bi/Bi2O3 nanoparticles on TiO2 nts for the enhanced photoelectrocatalytic degradation of pollutants. J. Alloys Compd. 2020, 815, 152478.

    Article  CAS  Google Scholar 

  217. Wang, J. Z.; Wang, Y. N.; Cao, C. S.; Zhang, Y.; Zhang, Y. Q.; Zhu, L. Y. Decomposition of highly persistent perfluorooctanoic acid by hollow Bi/BiOI1−xFx: Synergistic effects of surface plasmon resonance and modified band structures. J. Hazard Mater. 2021, 402, 123459.

    Article  CAS  Google Scholar 

  218. Li, K.; Liang, Y. J.; Yang, J.; Yang, G.; Zhang, H.; Wang, K.; Xu, R.; Xie, X. J. Glucose-induced fabrication of Bi/α-FeC2O4·2H2O heterojunctions: A bifunctional catalyst with enhanced photocatalytic and Fenton oxidation efficiency. Catal. Sci. Technol. 2019, 9, 2543–2552.

    Article  CAS  Google Scholar 

  219. Jin, X. Y.; Lei, S. Y.; Chen, J. F.; Zhong, J. B.; Zhang, S. L.; Tang, X. Q. Bi0 and oxygen vacancies co-induced enhanced visible-light photocatalytic detoxication of three typical contaminants over Bi2WO6 treated by NaBH4 solution. Surf. Interfaces 2022, 28, 101648.

    Article  CAS  Google Scholar 

  220. Yin, S.; Zhong, K.; Yu, Q.; Wang, Z. L.; Li, Q. D.; Feng, Z. Y.; Du, H. S.; Yang, J. M.; Hua, Y. J.; Zhu, X. W. et al. Boosting CO2 capture and its photochemical conversion on bismuth surface. Phys. Status solidi A 2021, 218, 2000671.

    Article  CAS  Google Scholar 

  221. Sun, L. M.; Yuan, Y. S.; Wang, F.; Zhao, Y. L.; Zhan, W. W.; Han, X. G. Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy 2020, 74, 104909.

    Article  CAS  Google Scholar 

  222. Tang, X. F.; Huang, J. C.; Liao, H. Z.; Chen, G. X.; Mo, Z. P.; Ma, D. B.; Zhan, R. Z.; Li, Y. D.; Luo, J. Y. Growth of W18O49/WOx/W dendritic nanostructures by one-step thermal evaporation and their high-performance photocatalytic activities in methyl orange degradation. CrystEngComm 2019, 21, 5905–5914.

    Article  CAS  Google Scholar 

  223. Yu, M. J.; Chang, C. L.; Lan, H. Y.; Chiao, Z. Y.; Chen, Y. C.; Lee, H. W. H.; Chang, Y. C.; Chang, S. W.; Tanaka, T.; Tung, V. et al. Plasmon-enhanced solar-driven hydrogen evolution using titanium nitride metasurface broadband absorbers. ACS Photonics 2021, 8, 3125–3132.

    Article  CAS  Google Scholar 

  224. Hao, J. X.; He, H.; Gong, S. Q.; Fan, J. C.; Xu, Q. J.; Min, Y. L. WN coupled with Bi nanoparticles to enhance the localized surface plasmon resonance effect for photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 19884–19893.

    Article  CAS  Google Scholar 

  225. Li, Y. Y.; Wang, J. G.; Fan, Y. C.; Sun, H. H.; Hua, W.; Liu, H. Y.; Wei, B. Q. Plasmonic TiN boosting nitrogen-doped TiO2 for ultrahigh efficient photoelectrochemical oxygen evolution. Appl. Catal. B: Environ. 2019, 246, 21–29.

    Article  CAS  Google Scholar 

  226. Zeng, X. J.; Choi, S. M.; Bai, Y. C.; Jang, M. J.; Yu, R. H.; Cho, H. S.; Kim, C. H.; Myung, N. V.; Yin, Y. D. Plasmon-enhanced oxygen evolution catalyzed by Fe2N-embedded TiOxNy nanoshells. ACS Appl. Energy Mater. 2020, 3, 146–151.

    Article  CAS  Google Scholar 

  227. Awin, E. W.; Lale, A.; Hari Kumar, K. C.; Demirci, U. B.; Bernard, S.; Kumar, R. Plasmon enhanced visible light photocatalytic activity in polymer-derived TiN/Si-O-C-N nanocomposites. Mater. Des. 2018, 157, 87–96.

    Article  CAS  Google Scholar 

  228. Wang, H. M.; Zhao, R.; Hu, H. X.; Fan, X. W.; Zhang, D. J.; Wang, D. 0d/2d heterojunctions of Ti3C2 MXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl. Mater. Interfaces 2020, 12, 40176–40185.

    Article  CAS  Google Scholar 

  229. Xu, X. H.; Dutta, A.; Khurgin, J.; Wei, A.; Shalaev, V. M.; Boltasseva, A. TiN@TiO2 core—shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection. Laser Photonics Rev. 2020, 14, 1900376.

    Article  CAS  Google Scholar 

  230. Jiang, W. Q.; Fu, Q. G.; Wei, H. Y.; Yao, A. H. TiN nanoparticles: Synthesis and application as near-infrared photothermal agents for cancer therapy. J. Mater. Sci. 2019, 54, 5743–5756.

    Article  CAS  Google Scholar 

  231. Bora, J.; Podder, S.; Gogoi, D.; Basumatary, B.; Pal, A. R. An all metal nitride nanostructure configuration: Study and exploitation in efficient photo-detection. J. Alloys Compd. 2021, 879, 160460.

    Article  CAS  Google Scholar 

  232. Podder, S.; Pal, A. R. Hot carrier devices using visible and NIR responsive titanium nitride nanostructures with stoichiometry variation. Opt. Mater. 2019, 97, 109379.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52025061) and Royal Society-Newton Advanced Fellowship grant (No. NAF/R1/191163). This work was also supported by the China Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengwei Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, Y., Huang, Y. et al. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review. Nano Res. 15, 10268–10291 (2022). https://doi.org/10.1007/s12274-022-4700-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4700-0

Keywords

Navigation