Skip to main content
Log in

Bifunctional Fe-doped CoP@Ni2P heteroarchitectures for high-efficient water electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is important to develop economical and durable electrocatalysts for sustainable energy conversion technology. However, the current catalysts still suffer from insufficient hydrogen adsorption energy. Herein, we report a kind of novel bi-phosphide catalyst through constructing heterogeneous structures and cation doping. The obtained sample delivers an outstanding hydrogen evolution reaction (HER) performance at all pH range. As oxygen evolution reaction (OER) electrocatalyst, Fe-CoP@Ni2P samples show an overpotential of 237 mV at 50 mA·cm−2 in alkaline solution. For electrolysis of water, Fe-CoP@Ni2P catalysts deliver a cell voltage of 1.59 V at 50 mA·cm−2 and long durability. Furthermore, density functional theory (DFT) calculation further confirms that the doped heterostructure promotes Gibbs free energy for hydrogen adsorption. And the significant increase in the density of total states (DOS) also enhances the catalytic activity of HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, D.; Zeng, Q.; Hu, C.; Chen, D.; Liu, H.; Han, Y.; Xu, L.; Zhang, Q.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120017.

  2. Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

    Article  CAS  Google Scholar 

  3. Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120010.

  4. Zhao, D. P.; Zhang, R.; Dai, M. Z.; Liu, H. Q.; Jian, W.; Bai, F. Q.; Wu, X. Constructing high efficiency CoZnxMn2−xO4 electrocatalyst by regulating the electronic structure and surface reconstruction. Small 2022, 18, 2107268.

    Article  CAS  Google Scholar 

  5. Liu, H. Q.; Zhao, D. P.; Dai, M. Z.; Zhu, X. F.; Qu, F. Y.; Umar, A.; Wu, X. PEDOT decorated CoNi2S4 nanosheets electrode as bifunctional electrocatalyst for enhanced electrocatalysis. Chem. Eng. J. 2022, 428, 131183.

    Article  CAS  Google Scholar 

  6. Zhao, D. P.; Dai, M. Z.; Zhao, Y.; Liu, H. Q.; Liu, Y.; Wu, X. Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation. Nano Energy 2020, 72, 104715.

    Article  CAS  Google Scholar 

  7. Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

    Article  CAS  Google Scholar 

  8. Duan, Z. X.; Tan, X. J.; Sun, Y. C.; Zhang, W. C.; Umar, A.; Wu, X. Manipulating the electrocatalytic performance of NiCoP nanowires by V doping under acidic and basic conditions for hydrogen and oxygen evolution reactions. ACS Appl. Nano Mater. 2021, 4, 10791–10798.

    Article  CAS  Google Scholar 

  9. Zhao, D.; Dai, M.; Liu, H.; Zhu, X.; Wu, X. PPy film anchored on ZnCo2O4 nanowires facilitating efficient bifunctional electrocatalysis. Mater. Today Energy 2021, 20, 100637.

    Article  CAS  Google Scholar 

  10. Yang, N. W.; Chen, D.; Cui, P. L.; Lu, T. Y.; Liu, H.; Hu, C. Q.; Xu, L.; Yang, J. Heterogeneous nanocomposites consisting of Pt3Co alloy particles and CoP2 nanorods towards high-efficiency methanol electro-oxidation. SmartMat 2021, 2, 234–245.

    Article  CAS  Google Scholar 

  11. Shi, J. H.; Qiu, F.; Yuan, W. B.; Guo, M. M.; Lu, Z. H. Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chem. Eng. J. 2021, 403, 126312.

    Article  CAS  Google Scholar 

  12. Liu, B. C.; Li, H.; Cao, B.; Jiang, J. N.; Gao, R.; Zhang, J. Few layered N, P dual-doped carbon-encapsulated ultrafine MoP nanocrystal/MoP cluster hybrids on carbon cloth: An ultrahigh active and durable 3D self-supported integrated electrode for hydrogen evolution reaction in a wide pH range. Adv. Funct. Mater. 2018, 28, 1801527.

    Article  Google Scholar 

  13. Duan, Z. X.; Liu, H. Q.; Tan, X. J.; Umar, A.; Wu, X. Bifunctional CoP electrocatalysts for overall water splitting. Catal. Commun. 2022, 162, 106379.

    Article  CAS  Google Scholar 

  14. Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.

    Article  Google Scholar 

  15. Yuan, G. J.; Bai, J. L.; Zhang, L.; Chen, X.; Ren, L. L. The effect of P vacancies on the activity of cobalt phosphide nanorods as oxygen evolution electrocatalyst in alkali. Appl. Cataly. B: Environ. 2021, 284, 119693.

    Article  CAS  Google Scholar 

  16. Li, Y.; Dong, Z. H.; Jiao, L. F. Multifunctional transition metalbased phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

    Article  CAS  Google Scholar 

  17. Guan, C.; Xiao, W.; Wu, H. J.; Liu, X. M.; Zang, W. J.; Zhang, H.; Ding, J.; Feng, Y. P.; Pennycook, S. J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2011, 48, 73–80.

    Article  Google Scholar 

  18. Xue, H. Y.; Meng, A. L.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181.

    Article  CAS  Google Scholar 

  19. Liu, H. Q.; Zhao, D. P.; Liu, Y.; Tong, Y. L.; Wu, X.; Shen, G. Z. NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Sci. China Mater. 2021, 64, 581–591.

    Article  CAS  Google Scholar 

  20. Luo, X.; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. N.; He, J. W.; Shi, Z. H.; Li, N. et al. Interface engineering of hierarchical branched Mo-Doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.

    Article  CAS  Google Scholar 

  21. Boppella, R.; Tan, J. W.; Yang, W.; Moon, J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv. Funct. Mater. 2019, 29, 1807976.

    Article  Google Scholar 

  22. Meng, T.; Qin, J. W.; Xu, D.; Cao, M. H. Atomic heterointerface-induced local charge distribution and enhanced water adsorption behavior in a cobalt phosphide electrocatalyst for self-powered highly efficient overall water splitting. ACS Appl. Mater. Interfaces 2019, 11, 9023–9032.

    Article  CAS  Google Scholar 

  23. Zhao, D. P.; Dai, M. Z.; Liu, H. Q.; Duan, Z. X.; Tan, X. J.; Wu, X. Bifunctional ZnCo2S4@CoZn13 hybrid electrocatalysts for high efficient overall water splitting. J. Energy Chem. 2022, 69, 292–300.

    Article  CAS  Google Scholar 

  24. Song, L. H.; Zhang, J.; Sarkar, S.; Zhao, C. F.; Wang, Z. W.; Huang, C. Y.; Yan, L. M.; Zhao, Y. F. Interface engineering of FeCo-Co structure as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries via alloying degree control strategy. Chem. Eng. J. 2022, 433, 133686.

    Article  CAS  Google Scholar 

  25. Liu, T.; Li, P.; Yao, N.; Cheng, G. Z.; Chen, S. L.; Luo, W.; Yin, Y. D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 4679–4684.

    Article  CAS  Google Scholar 

  26. Liu, C.; Wu, X.; Wang, B. Performance modulation of energy storage devices: A case of Ni-Co-S electrode materials. Chem. Eng. J. 2020, 392, 123651.

    Article  CAS  Google Scholar 

  27. Zhou, L.; Jiang, S.; Liu, Y. K.; Shao, M. F.; Wei, M.; Duan, X. Ultrathin CoNiP@layered double hydroxides core-shell nanosheets arrays for largely enhanced overall water splitting. ACS Appl. Energy Mater. 2011, 1, 623–631.

    Article  Google Scholar 

  28. Huang, X. K.; Xu, X. P.; Luan, X.; Cheng, D. J. CoP nanowires coupled with CoMoP nanosheets as a highly efficient cooperative catalyst for hydrogen evolution reaction. Nano Energy 2020, 68, 104332.

    Article  CAS  Google Scholar 

  29. Hu, E. L.; Feng, Y. F.; Nai, J. W.; Zhao, D.; Hu, Y.; Lou, X. W. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2011, 11, 872–880.

    Article  Google Scholar 

  30. Li, H. G.; Wang, J.; Qi, R. J.; Hu, Y. F.; Zhang, J.; Zhao, H. B.; Zhang, J. J.; Zhao, Y. F. Enhanced Fe 3d delocalization and moderate spin polarization in Fe-Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Appl. Cataly. B: Environ. 2021, 285, 119778.

    Article  CAS  Google Scholar 

  31. Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.

    Article  CAS  Google Scholar 

  32. Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337–7347.

    Article  CAS  Google Scholar 

  33. Yan, Y. T.; Lin, J. H.; Cao, J.; Guo, S.; Zheng, X. H.; Feng, J. C.; Qi, J. L. Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies. J. Mate. Chem. A 2019, 7, 24486–24492.

    Article  CAS  Google Scholar 

  34. Liu, Z.; Tang, B.; Gu, X. C.; Liu, H.; Feng, L. G. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chem. Eng. J. 2020, 395, 125170.

    Article  CAS  Google Scholar 

  35. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    Article  CAS  Google Scholar 

  36. Tian, Y. M.; Lin, Z. W.; Yu, J.; Zhao, S. J.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Qi, Y. F.; Zhang, H. S.; Li, R. M. et al. Superaerophobic quaternary Ni-Co-S-P nanoparticles for efficient overall water-splitting. ACS Sustainable Chem. Eng. 2019, 7, 14639–14646.

    Article  CAS  Google Scholar 

  37. Luo, X.; Ji, P. X.; Wang, P. Y.; Tan, X.; Chen, L.; Mu, S. C. Spherical Ni3S2/F-NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 2022, 9, 2104846.

    Article  CAS  Google Scholar 

  38. Zeng, L. Y.; Sun, K. A.; Wang, X. B.; Liu, Y. Q.; Pan, Y.; Liu, Z.; Cao, D. W.; Song, Y.; Liu, S. H.; Liu, C. G. Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake Arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 52172218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Zhao, D., Sun, Y. et al. Bifunctional Fe-doped CoP@Ni2P heteroarchitectures for high-efficient water electrocatalysis. Nano Res. 15, 8865–8871 (2022). https://doi.org/10.1007/s12274-022-4673-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4673-z

Keywords

Navigation