Skip to main content
Log in

Low-coordinated Ni-N1-C3 sites atomically dispersed on hollow carbon nanotubes for efficient CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Low-coordinated single atom catalysts compared to M-N4 are appealing in optimized electronic structure for CO2 electro-reduction, but the preparation is still very challenging. Herein, a novel single Ni atom catalyst with Ni-N1-C3 configuration is in-situ evolved on curved carbon nanotubes. The obtained Ni-N1-C3 catalyst exhibits a superior CO Faradaic efficiency of 97% and turnover frequency of 2,890 h−1 at −0.9 V versus the reversible hydrogen electrode, as well as long-term stability over 45 h. High current densities exceeding 200 mA·cm−2 and CO Faradaic efficiency of 99% are achieved in flow-cell. Moreover, in-situ potential-and time-dependent Raman spectra identify the key intermediates of *COOH and *CO during CO2-to-CO conversion. Theoretical calculations reveal that the upward-shifted d-band center and charge-rich Ni sites of Ni-N1-C3 facilitate the electron transfer to *COOH and thus reduce the *COOH formation energy barrier. This work demonstrates a strategy for modulating the coordination environment for efficient CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    Article  CAS  Google Scholar 

  2. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

    Article  CAS  Google Scholar 

  3. Ren, S. X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 2019, 365, 367–369.

    Article  CAS  Google Scholar 

  4. Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F. W.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.

    Article  CAS  Google Scholar 

  5. Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

    Article  CAS  Google Scholar 

  6. Su, X.; Yang, X. F.; Huang, Y. Q.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2019, 52, 656–664.

    Article  CAS  Google Scholar 

  7. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

    Article  CAS  Google Scholar 

  8. He, Q.; Lee, J. H.; Liu, D. B.; Liu, Y. M.; Lin, Z. X.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 2020, 30, 2000407.

    Article  CAS  Google Scholar 

  9. Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944.

    Article  Google Scholar 

  10. Zhang, Z.; Xiao, J. P.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S. H.; Meng, X. G.; Wang, Y. et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 16339–16342.

    Article  CAS  Google Scholar 

  11. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    Article  CAS  Google Scholar 

  12. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  13. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  14. Sun, X. H.; Tuo, Y.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  15. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  16. Cheng, Y.; Zhao, S. Y.; Li, H. B.; He, S.; Veder, J. P.; Johannessen, B.; Xiao, J. P.; Lu, S. F.; Pan, J.; Chisholm, M. F. et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Appl. Catal. B:Environ. 2019, 243, 294–303.

    Article  CAS  Google Scholar 

  17. Jiang, K.; Siahrostami, S.; Zheng, T. T.; Hu, Y. F.; Hwang, S.; Stavitski, E.; Peng, Y. D.; Dynes, J.; Gangisetty, M.; Su, D. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11, 893–903.

    Article  CAS  Google Scholar 

  18. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating coordination environment of single-atom Ni electrocatalysts templated by MOF for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

    Article  CAS  Google Scholar 

  19. Möller, T.; Ju, W.; Bagger, A.; Wang, X. L.; Luo, F.; Thanh, T. N.; Varela, A. S.; Rossmeisl, J.; Strasser, P. Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities. Energy Environ. Sci. 2019, 12, 640–647.

    Article  Google Scholar 

  20. Zhao, X. H.; Liu, Y. Y. Unveiling the active structure of single nickel atom catalysis: Critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777.

    Article  CAS  Google Scholar 

  21. Hao, Z. J.; Chen, J. X.; Zhang, D. F.; Zheng, L. R.; Li, Y. M.; Yin, Z.; He, G.; Jiao, L.; Wen, Z. H.; Lv, X. J. Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction. Sci. Bull. 2021, 66, 1649–1658.

    Article  CAS  Google Scholar 

  22. Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

    Article  CAS  Google Scholar 

  23. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  24. Kwon, K. C.; Suh, J. M.; Varma, R. S.; Shokouhimehr, M.; Jang, H. W. Electrocatalytic water splitting and CO2 reduction: Sustainable solutions via single-atom catalysts supported on 2D materials. Small Methods 2019, 3, 1800492.

    Article  Google Scholar 

  25. Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

    Article  CAS  Google Scholar 

  26. Wu, X. S.; Chen, J. L.; Wang, M.; Li, X. Y.; Yang, L.; Li, G.; Shan, L.; Li, X. Y.; Lin, Y. X.; Jiang, J. High-curvature carbon-supported Ni single atoms with charge polarization for highly efficient CO2 reduction. Chem. Commun. 2022, 58, 2914–2917.

    Article  CAS  Google Scholar 

  27. Chen, K. J.; Liu, K.; An, P. D.; Li, H.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.

    Article  CAS  Google Scholar 

  28. Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

    Article  CAS  Google Scholar 

  29. Yang, F. Q.; Yu, H. M.; Mao, X. Y.; Meng, Q. G.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Wang, J.; Deng, S. G. Boosting electrochemical CO2 reduction on ternary heteroatoms-doped porous carbon. Chem. Eng. J. 2021, 425, 131661.

    Article  CAS  Google Scholar 

  30. Gándara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X. F.; O’Keeffe, M.; Yaghi, O. M. Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem. -Eur. J. 2012, 18, 10595–10601.

    Article  Google Scholar 

  31. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

    Article  CAS  Google Scholar 

  32. Zhu, Q. C.; Xu, S. M.; Harris, M. M.; Ma, C.; Liu, Y. S.; Wei, X.; Xu, H. S.; Zhou, Y. X.; Cao, Y. C.; Wang, K. X. et al. A composite of carbon-wrapped Mo2C nanoparticle and carbon nanotube formed directly on Ni foam as a high-performance binder-free cathode for Li-O2 batteries. Adv. Funct. Mater. 2016, 26, 8514–8520.

    Article  CAS  Google Scholar 

  33. Yin, H. Y.; Zhu, J. J.; Chen, J. L.; Gong, J. Y.; Nie, Q. L. MOF-derived in situ growth of carbon nanotubes entangled Ni/NiO porous polyhedrons for high performance glucose sensor. Mater. Lett. 2018, 221, 267–270.

    Article  CAS  Google Scholar 

  34. Hou, Y.; Liang, Y. L.; Shi, P. C.; Huang, Y. B.; Cao, R. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity. Appl. Catal. B:Environ. 2020, 271, 118929.

    Article  CAS  Google Scholar 

  35. Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.

    Article  CAS  Google Scholar 

  36. Yang, F. Q.; Jiang, C.; Ma, M. F.; Shu, F. H.; Mao, X. Y.; Yu, W. K.; Wang, J.; Zeng, Z. L.; Deng, S. G. Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid. Chem. Eng. J. 2020, 400, 125879.

    Article  CAS  Google Scholar 

  37. Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2011, 9, 1460.

    Article  Google Scholar 

  38. Zou, G. Q.; Hou, H. S.; Foster, C. W.; Banks, C. E.; Guo, T. X.; Jiang, Y. L.; Zhang, Y.; Ji, X. B. Advanced hierarchical vesicular carbon co-doped with S, P, N for high-rate sodium storage. Adv. Sci. 2011, 5, 1800241.

    Article  Google Scholar 

  39. Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

    Article  CAS  Google Scholar 

  40. Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Y. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 2020, 10, 1903068.

    Article  CAS  Google Scholar 

  41. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    Article  CAS  Google Scholar 

  42. Hai, X.; Zhao, X. X.; Guo, N.; Yao, C. H.; Chen, C.; Liu, W.; Du, Y. H.; Yan, H.; Li, J.; Chen, Z. X. et al. Engineering local and global structures of single Co atoms for a superior oxygen reduction reaction. ACS Catal. 2020, 10, 5862–5870.

    Article  CAS  Google Scholar 

  43. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  CAS  Google Scholar 

  44. Song, X. K.; Zhang, H.; Yang, Y. Q.; Zhang, B.; Zuo, M.; Cao, X.; Sun, J. H.; Lin, C.; Li, X. P.; Jiang, Z. Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production. Adv. Sci. 2018, 5, 1800177.

    Article  Google Scholar 

  45. Koshy, D. M.; Chen, S. C.; Lee, D. U.; Stevens, M. B.; Abdellah, A. M.; Dull, S. M.; Chen, G.; Nordlund, D.; Gallo, A.; Hahn, C. et al. Understanding the origin of highly selective CO2 electroreduction to CO on Ni,N-doped carbon catalysts. Angew. Chem., Int. Ed. 2020, 55, 4043–4050.

    Article  Google Scholar 

  46. Zhang, C. H.; Yang, S. Z.; Wu, J. J.; Liu, M. J.; Yazdi, S.; Ren, M. Q.; Sha, J. W.; Zhong, J.; Nie, K. Q.; Jalilov, A. S. et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv. Energy Mater. 2018, 8, 1703487.

    Article  Google Scholar 

  47. Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016, 55, 698–702.

    Article  CAS  Google Scholar 

  48. Pan, F. P.; Deng, W.; Justiniano, C.; Li, Y. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl. Catal. B:Environ. 2018, 226, 463–472.

    Article  CAS  Google Scholar 

  49. Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.

    Article  CAS  Google Scholar 

  50. Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

    Article  CAS  Google Scholar 

  51. Shan, W. Y.; Liu, R.; Zhao, H. C.; He, Z. L.; Lai, Y. J.; Li, S. S.; He, G. Z.; Liu, J. F. In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction. ACS Nano 2020, 14, 11363–11372.

    Article  CAS  Google Scholar 

  52. Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. USA 2018, 115, E9261–E9270.

    Article  CAS  Google Scholar 

  53. Pan, Z.; Wang, K.; Ye, K. H.; Wang, Y.; Su, H. Y.; Hu, B. H.; Xiao, J.; Yu, T. W.; Wang, Y.; Song, S. Q. Intermediate adsorption states switch to selectively catalyze electrochemical CO2 reduction. ACS Catal. 2020, 10, 3871–3880.

    Article  CAS  Google Scholar 

  54. Yang, Y.; Ohnoutek, L.; Ajmal, S.; Zheng, X. Z.; Feng, Y. Q.; Li, K. J.; Wang, T.; Deng, Y.; Liu, Y. Y.; Xu, D. et al. “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ Raman characterization. J. Mater. Chem. A 2019, 7, 11836–11846.

    Article  CAS  Google Scholar 

  55. Vasileff, A.; Zhi, X.; Xu, C. C.; Ge, L.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 2019, 9, 9411–9417.

    Article  CAS  Google Scholar 

  56. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (Nos. 21908090, 22008101, 22108243, and 22168023) and the Natural Science Foundation of Jiangxi Province (No. 20212BAB213038). Y. F. acknowledges the 2020 Nanchang University Scholarship for Doctoral Visiting Abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Yu, H., Su, Y. et al. Low-coordinated Ni-N1-C3 sites atomically dispersed on hollow carbon nanotubes for efficient CO2 reduction. Nano Res. 16, 146–154 (2023). https://doi.org/10.1007/s12274-022-4623-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4623-9

Keywords

Navigation