Skip to main content
Log in

PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It is challenging and desirable to construct Pt-based nanocomposites with oxygen storage function as efficient oxygen reduction reaction (ORR) catalysts for practical proton exchange membrane fuel cells (PEMFCs). Herein, we achieve novel porous nanocomposites of PtCu3 nanoalloys-embedded in the PWOx matrix (PtCu3@PWOx), which has an oxygen container feature. The PtCu3@PWOx/C exhibits an ultrahigh mass activity (MA) of 3.94 A·mgPt−1 for ORR, which is 26.3 times as high as the commercial Pt/C and the highest value ever reported for PtCu-based binary system. Theoretical calculations reveal that the compressive strain and d-band center downshift of Pt intrinsically contribute to the excellent ORR performance. In H2-air PEMFCs at room temperature, furthermore, the PtCu3@PWOx/C delivers a high power density (218.6 mW·cm−2), much superior to commercial Pt/C (131.6 mW·cm−2). In H2-O2 PEMFCs, PtCu3@PWOx/C outputs a maximum power density of 420.1 mW·cm−2. This work provides an effective idea for designing oxygen-storing ORR catalysts used for practical room-temperature H2-air fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem. 2019, 5, 1486–1511.

    Article  CAS  Google Scholar 

  2. Sun, Y. Y.; Polani, S.; Luo, F.; Ott, S.; Strasser, P.; Dionigi, F. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 2021, 12, 5984.

    Article  CAS  Google Scholar 

  3. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  Google Scholar 

  4. Zhang, J. W.; Yuan, Y. L.; Gao, L.; Zeng, G. M.; Li, M. F.; Huang, H. W. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: Fundamental understanding and design strategies. Adv. Mater. 2021, 33, 2006494.

    Article  CAS  Google Scholar 

  5. Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

    Article  CAS  Google Scholar 

  6. Huang, L.; Zaman, S.; Wang, Z. T.; Niu, H. T.; You, B.; Xia, B. Y. Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys. Chim. Sin. 2021, 37, 2009035.

    Google Scholar 

  7. Zhu, E. B.; Xue, W.; Wang, S. Y.; Yan, X. C.; Zhou, J. X.; Liu, Y.; Cai, J.; Liu, E. S.; Jia, Q. Y.; Duan, X. F. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 2020, 13, 3310–3314.

    Article  CAS  Google Scholar 

  8. Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

    Article  CAS  Google Scholar 

  9. Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

    Article  CAS  Google Scholar 

  10. Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

    Article  CAS  Google Scholar 

  11. Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

    Article  CAS  Google Scholar 

  12. Xia, Y. N.; Campbell, C. T.; Cuenya, B. R.; Mavrikakis, M. Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals. Chem. Rev. 2021, 121, 563–566.

    Article  CAS  Google Scholar 

  13. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  14. Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H. N.; Hübner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 2020, 19, 77–85.

    Article  CAS  Google Scholar 

  15. Garlyyev, B.; Watzele, S.; Fichtner, J.; Michalička, J.; Schökel, A.; Senyshyn, A.; Perego, A.; Pan, D. J.; El-Sayed, H. A.; Macak, J. M. et al. Electrochemical top-down synthesis of C-supported Pt nanoparticles with controllable shape and size: Mechanistic insights and application. Nano Res. 2021, 14, 2762–2769.

    Article  CAS  Google Scholar 

  16. Song, J. J.; Yang, Y. X.; Liu, S. J.; Li, L.; Yu, N.; Fan, Y. T.; Chen, Z. M.; Kuai, L.; Geng, B. Y. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res. 2021, 14, 4841–4847.

    Article  CAS  Google Scholar 

  17. Long, P.; Du, S. Q.; Liu, Q.; Tao, L.; Peng, C.; Wang, T. H.; Gu, K. Z.; Xie, C.; Zhang, Y. Q.; Chen, R. et al. Fluorination-enabled interface of PtNi electrocatalysts for high-performance high-temperature proton exchange membrane fuel cells. Sci. China Mater. 2022, 65, 904–912.

    Article  CAS  Google Scholar 

  18. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  CAS  Google Scholar 

  19. Lei, W. J.; Li, M. G.; He, L.; Meng, X.; Mu, Z. J.; Yu, Y. S.; Ross, F. M.; Yang, W. W. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638–645.

    Article  CAS  Google Scholar 

  20. Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. J. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

    Article  CAS  Google Scholar 

  21. Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fang, W. S.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.

    Article  CAS  Google Scholar 

  22. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  CAS  Google Scholar 

  23. Wang, P. T.; Shao, Q.; Huang, X. Q. Updating Pt-Based electrocatalysts for practical fuel cells. Joule 2018, 2, 2514–2516.

    Article  Google Scholar 

  24. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  CAS  Google Scholar 

  25. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  CAS  Google Scholar 

  26. Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205–4214.

    Article  CAS  Google Scholar 

  27. Chaudhari, N. K.; Hong, Y. J.; Kim, B.; Choi, S. I.; Lee, K. Pt-Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. J. Mater. Chem. A. 2019, 7, 17183–17203.

    Article  CAS  Google Scholar 

  28. Yan, W. J.; Zhang, D. P.; Zhang, Q. X.; Sun, Y.; Zhang, S. X.; Du, F.; Jin, X. Synthesis of PtCu-based nanocatalysts: Fundamentals and emerging challenges in energy conversion. J. Energy Chem. 2022, 64, 583–606.

    Article  CAS  Google Scholar 

  29. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

    Article  CAS  Google Scholar 

  30. Kim, H. Y.; Kwon, T.; Ha, Y.; Jun, M.; Baik, H.; Jeong, H. Y.; Kim, H.; Lee, K.; Joo, S. H. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 2020, 20, 7413–7421.

    Article  CAS  Google Scholar 

  31. Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

    Article  CAS  Google Scholar 

  32. Gatalo, M.; Ruiz-Zepeda, F.; Hodnik, N.; Dražić, G.; Bele, M.; Gaberšček, M. Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: An in-situ heating transmission electron microscopy study. Nano Energy 2019, 63, 103892.

    Article  CAS  Google Scholar 

  33. Luo, S. P.; Tang, M.; Shen, P. K.; Ye, S. Y. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv. Mater. 2017, 29, 1601687.

    Article  Google Scholar 

  34. Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844–10851.

    Article  CAS  Google Scholar 

  35. Li, W. Q.; Hu, Z. Y.; Zhang, Z. W.; Wei, P.; Zhang, J. N.; Pu, Z. H.; Zhu, J. W.; He, D. P.; Mu, S. C.; Van Tendeloo, G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J. Catal. 2019, 375, 164–170.

    Article  CAS  Google Scholar 

  36. Ahn, C. Y.; Park, J. E.; Kim, S.; Kim, O. H.; Hwang, W.; Her, M.; Kang, S. Y.; Park, S.; Kwon, O. J.; Park, H. S. et al. Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells. Chem. Rev. 2021, 121, 15075–15140.

    Article  CAS  Google Scholar 

  37. Choi, J.; Lee, Y. J.; Park, D.; Jeong, H.; Shin, S.; Yun, H.; Lim, J.; Han, J. H.; Kim, E. J.; Jeon, S. S. et al. Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy Environ. Sci. 2020, 13, 4921–4929.

    Article  CAS  Google Scholar 

  38. Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W. B.; Thompson, L.; Kongkanand, A. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 2018, 3, 618–621.

    Article  CAS  Google Scholar 

  39. Lee, Y. J.; Kim, H. E.; Lee, E.; Lee, J.; Shin, S.; Yun, H.; Kim, E. J.; Jung, H.; Ham, H. C.; Kim, B. J. et al. Ultra-low Pt loaded porous carbon microparticles with controlled channel structure for high-performance fuel cell catalysts. Adv. Energy Mater. 2021, 11, 2102970.

    Article  CAS  Google Scholar 

  40. Qin, Y. C.; Zhang, W. L.; Guo, K.; Liu, X. B.; Liu, J. Q.; Liang, X. Y.; Wang, X. P.; Gao, D. W.; Gan, L. Y.; Zhu, Y. T. et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv. Funct. Mater. 2020, 30, 1910107.

    Article  CAS  Google Scholar 

  41. Fang, D. H.; Wan, L.; Jiang, Q. K.; Zhang, H. J.; Tang, X. J.; Qin, X. P.; Shao, Z. G.; Wei, Z. D. Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Res. 2019, 12, 2766–2773.

    Article  CAS  Google Scholar 

  42. Wang, D. D.; Chen, Z. W.; Huang, Y. C.; Li, W.; Wang, J.; Lu, Z. L.; Gu, K. Z.; Wang, T. H.; Wu, Y. J.; Chen, C. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 2021, 64, 2454–2466.

    Article  CAS  Google Scholar 

  43. Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65–71.

    Article  CAS  Google Scholar 

  44. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  CAS  Google Scholar 

  45. Yang, X. T.; Yao, K. X.; Ye, J. Y.; Yuan, Q.; Zhao, F. L.; Li, Y. F.; Zhou, Z. Y. Interface-rich three-dimensional Au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 2021, 31, 2103671.

    Article  CAS  Google Scholar 

  46. Zhao, T.; Luo, E. G.; Li, Y.; Wang, X.; Liu, C. P.; Xing, W.; Ge, J. J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678.

    Article  CAS  Google Scholar 

  47. Liu, H. P.; Liu, K.; Zhong, P.; Qi, J.; Bian, J. H.; Fan, Q. K.; Ren, K.; Zheng, H. Q.; Han, L.; Yin, Y. D. et al. Ultrathin Pt-Ag alloy nanotubes with regular nanopores for enhanced electrocatalytic activity. Chem. Mater. 2018, 30, 7744–7751.

    Article  CAS  Google Scholar 

  48. Zhou, T. P.; Shan, H.; Yu, H.; Zhong, C. A.; Ge, J. K.; Zhang, N.; Chu, W. S.; Yan, W. S.; Xu, Q.; Wu, H. A. et al. Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 2020, 32, 2003251.

    Article  CAS  Google Scholar 

  49. Feng, Y.; Cheng, C. Q.; Zou, C. Q.; Zheng, X. L.; Mao, J.; Liu, H.; Li, Z.; Dong, C. K.; Du, X. W. Electroreduction of carbon dioxide in metallic nanopores through a pincer mechanism. Angew. Chem., Int. Ed. 2020, 59, 19297–19303.

    Article  CAS  Google Scholar 

  50. Shi, S.; Wen, X. L.; Sang, Q. Q.; Yin, S.; Wang, K. L.; Zhang, J.; Hu, M.; Yin, H. M.; He, J.; Ding, Y. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 2021, 14, 2681–2688.

    Article  CAS  Google Scholar 

  51. Feng, Y. G.; Huang, B. L.; Yang, C. Y.; Shao, Q.; Huang, X. Q. Platinum porous nanosheets with high surface distortion and Pt utilization for enhanced oxygen reduction catalysis. Adv. Funct. Mater. 2019, 29, 1904429.

    Article  CAS  Google Scholar 

  52. Peng, X. W.; Zhang, L.; Chen, Z. X.; Zhong, L. X.; Zhao, D. K.; Chi, X.; Zhao, X. X.; Li, L. G.; Lu, X. H.; Leng, K. et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 2019, 31, 1900341.

    Article  Google Scholar 

  53. Kang, Y. Q.; Wang, J. Q.; Wei, Y. P.; Wu, Y. L.; Xia, D. S.; Gan, L. Engineering nanoporous and solid core-shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res., in press, https://doi.org/10.1007/s12274-022-4238-1.

  54. Deng, Z. P.; Wang, X. L. Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich hollow porous carbon spheres. Nano Res., in press, https://doi.org/10.1007/s12274-022-4095-y.

  55. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  56. Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

    Article  CAS  Google Scholar 

  57. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  CAS  Google Scholar 

  58. Fidiani, E.; Thirunavukkarasu, G.; Li, Y.; Chiu, Y. L.; Du, S. F. Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Mater. Chem. A 2021, 9, 5578–5587.

    Article  CAS  Google Scholar 

  59. Park, C.; Lee, E.; Lee, G.; Tak, Y. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Appl. Catal. B Environ. 2020, 268, 118414.

    Article  CAS  Google Scholar 

  60. Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.

    Article  Google Scholar 

  61. Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

    Article  CAS  Google Scholar 

  62. Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

    Article  CAS  Google Scholar 

  63. Wen, Z.; Liu, J.; Li, J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 2008, 20, 743–747.

    Article  CAS  Google Scholar 

  64. Asset, T.; Job, N.; Busby, Y.; Crisci, A.; Martin, V.; Stergiopoulos, V.; Bonnaud, C.; Serov, A.; Atanassov, P.; Chattot, R. et al. Porous hollow PtNi/C electrocatalysts: Carbon support considerations to meet performance and stability requirements. ACS Catal. 2018, 8, 893–903.

    Article  CAS  Google Scholar 

  65. Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

    Article  CAS  Google Scholar 

  66. Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.

    Article  CAS  Google Scholar 

  67. Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

    CAS  Google Scholar 

  68. Xu, F.; Cai, S. B.; Lin, B. F.; Yang, L.; Le, H. F.; Mu, S. C. Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability. Small 2022, 18, 2107387.

    Article  CAS  Google Scholar 

  69. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571038), Foundation of Guizhou Province (No. 2019-5666), Education Department of Guizhou Province (No. 2021312), State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University, No. 2011DA105287-ZR202101), State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University, No. 202009), and the Open Fund of the Key Lab of Organic Optoelectronics & Molecular Engineering (Tsinghua University). We gratefully acknowledge Analytical and Testing Center of Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Yong Gan, Ke Xin Yao or Qiang Yuan.

Electronic Supplementary Material

12274_2022_4577_MOESM1_ESM.pdf

PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Shu, T., Zhao, F. et al. PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells. Nano Res. 15, 9010–9018 (2022). https://doi.org/10.1007/s12274-022-4577-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4577-y

Keywords

Navigation